[1] |
WILLIAMS K, CARSON J, LO C. Genetics of congenital heart disease[J]. Biomolecules, 2019, 9(12):879. doi:10.3390/biom9120879.
|
[2] |
WU X L, LI R, FU F, et al. Chromosome microarray analysis in the investigation of children with congenital heart disease[J]. BMC Pediatr, 2017, 17(1):117. doi:10.1186/s12887-017-0863-3.
|
[3] |
王维. 新生儿先天性心脏病防控措施研究进展[J]. 武警后勤学院学报(医学版), 2021, 30(1):80-84.
|
|
WANG W. Prevention and control measures for congenital heart disease in newborns[J]. Journal of Logistics University of PAP (Medical Sciences),2021, 30(1):80-84. doi:10.16548/j.2095-3720.2021.01.025.
|
[4] |
NAGY O, BARÁTH S, UJFALUSI A. The role of microRNAs in congenital heart disease[J]. EJIFCC, 2019, 30(2):165-178.
|
[5] |
BASTAMI M, CHOUPANI J, SAADATIAN Z, et al. miRNA polymorphisms and risk of cardio-cerebrovascular diseases:A systematic review and meta-analysis[J]. Int J Mol Sci, 2019, 20(2):293. doi:10.3390/ijms20020293.
|
[6] |
LU M, XU L, WANG M, et al. miR-149 promotes the myocardial differentiation of mouse bone marrow stem cells by targeting Dab2[J]. Mol Med Rep, 2018, 17(6):8502-8509. doi:10.3892/mmr.2018.8903.
|
[7] |
ULLAH M, QIAN N P M, YANNARELLI G, et al. Heat shock protein 20 promotes sirtuin 1-dependent cell proliferation in induced pluripotent stem cells[J]. World J Stem Cells, 2021, 13(6):659-669. doi:10.4252/wjsc.v13.i6.659.
|
[8] |
FANG X, BOGOMOLOVAS J, TREXLER C, et al. The BAG3- dependent and -independent roles of cardiac small heat shock proteins[J]. JCI Insight, 2019, 4(4):e126464. doi:10.1172/jci.insight.126464.
|
[9] |
张国明, 何丽芸, 马松峰. 不同方法在先天性心脏病室间隔缺损动物模型建立中的对比研究[J]. 中国心血管病研究, 2020, 18(11):1026-1029.
|
|
ZHANG G M, HE L Y, MA S F. Comparative study of different methods in establishing animal models of ventricular septal defec[J]. Chinese Journal of Cardiovascular Research, 2020, 18(11):1026-1029. doi:10.3969/j.issn.1672-5301.2020.11.013.
|
[10] |
CHEN T, LI S J, CHEN B, et al. Akt3 is a target of miR-29c-3p and serves an important function in the pathogenesis of congenital heart disease[J]. Int J Mol Med, 2019, 43(2):980-992. doi:10.3892/ijmm.2018.4008.
|
[11] |
HUANG G J, XIE X L, ZOU Y. MiR-23b targets GATA6 to down-regulate IGF-1 and promote the development of congenital heart disease[J]. Acta Cardiol, 2021:1-10. doi:10.1080/00015385.2021.1948207.
|
[12] |
HU C, HUANG S, WU F, et al. MicroRNA-219-5p participates in cyanotic congenital heart disease progression by regulating cardiomyocyte apoptosis[J]. Exp Ther Med, 2021, 21(1):36. doi:10.3892/etm.2020.9468.
|
[13] |
REN Z H, KE Z P, LUO M, et al. Icariin protects against ischemia-reperfusion injury in H9C2 cells by upregulating heat shock protein 20[J]. Mol Med Rep, 2018, 17(2):3336-3343. doi:10.3892/mmr.2017.8251.
|
[14] |
GOMEZ C R. Role of heat shock proteins in aging and chronic inflammatory diseases[J]. Geroscience, 2021, 43(5):2515-2532. doi:10.1007/s11357-021-00394-2.
|
[15] |
LI W, LIU J, ZOU D, et al. Exploration of bladder cancer molecular mechanisms based on miRNA-mRNA regulatory network[J]. Oncol Rep, 2017, 37(3):1461-1468. doi:10.3892/or.2017.5433.
|
[16] |
CHEN Y F, HU F, WANG X G, et al. MicroRNA-23a-5p is involved in the regulation of lipopolysaccharide-induced acute lung injury by targeting HSP20/ASK1[J]. Oxid Med Cell Longev, 2021, 2021:9942557. doi:10.1155/2021/9942557.
|