天津医药 ›› 2023, Vol. 51 ›› Issue (6): 642-647.doi: 10.11958/20221330
甘露1,2(), 刘基2, 袁晨2, 王玉恩2, 黎薛明2, 杨诗明2, 刘斌1,△
收稿日期:
2022-09-08
修回日期:
2023-03-03
出版日期:
2023-06-15
发布日期:
2023-06-20
通讯作者:
△E-mail:作者简介:
甘露(1984),女,医师,主要从事能谱CT技术方面研究。E-mail:
GAN Lu1,2(), LIU Ji2, YUAN Chen2, WANG Yuen2, LI Xueming2, YANG Shiming2, LIU Bin1,△
Received:
2022-09-08
Revised:
2023-03-03
Published:
2023-06-15
Online:
2023-06-20
Contact:
△E-mail:甘露, 刘基, 袁晨, 王玉恩, 黎薛明, 杨诗明, 刘斌. 能谱CT结合MARs技术对不同材质义齿伪影去除的临床价值[J]. 天津医药, 2023, 51(6): 642-647.
GAN Lu, LIU Ji, YUAN Chen, WANG Yuen, LI Xueming, YANG Shiming, LIU Bin. Clinical value of energy spectrum CT combined with MARs technique for artifact removal of dentures of different materials[J]. Tianjin Medical Journal, 2023, 51(6): 642-647.
摘要:
目的 研究能谱CT单能量成像及单能量+多伪影去除系统(MARs)去除义齿周围伪影的临床价值,并比较不同材质义齿对影像质量的影响。方法 纳入100例有义齿植入的患者,义齿种类包括镍铬合金(30例)、烤瓷(30例)、胶托+不锈钢托(40例)。在相同CT扫描参数条件下进行能谱成像技术(GSI)扫描,获得混合能量(QC)影像、70~140 keV的单能量影像及单能量+MARs影像。在每例患者义齿伪影最严重层面和邻近无伪影的软组织区域划定2个感兴趣区(ROI):ROI1选取在同层无伪影的头夹肌处;ROI2选取在口腔中部舌部软组织明暗相间伪影区,ROI面积150~200 mm2,分别测量噪声(SD)、CT平均值,并计算伪影指数(AI),以SD和AI作为客观评价参数。由2名高年资放射科医师对各组影像质量进行主观评分。结果 镍铬合金、烤瓷、胶托+不锈钢托3种材质义齿邻近组织的SD、AI随着管电压的增加而降低,在90 keV及以上时明显低于QC影像;单能量+MARs影像的SD和AI均明显低于同参数单能量影像;随着管电压的增加,口腔软组织的对比度明显降低,在110 keV+MARs时对比度最佳,主观评分最高。镍铬合金、烤瓷、胶托+不锈钢托3种材质义齿最佳成像参数比较,烤瓷的SD和AI最小。结论 能谱扫描联合MARs技术能有效减少镍铬合金、烤瓷、胶托+不锈钢托的金属伪影,可作为去除口腔修复体伪影的有效方法。
中图分类号:
图1 ROI的选择示意图 A:QC图像,义齿周边高密度硬化伪影及小片低密度暗区;B:单能谱110 keV+MARs图像,义齿周边无明显金属伪影,邻近软组织成像清晰;ROI1:同层面后颈部头夹肌的CT值、SD值;ROI2:受义齿干扰的口腔中舌部软组织明暗相间伪影区的CT值、SD值;窗宽300 HU、窗位35 HU。
Fig.1 Schematic diagram of ROI selection
成像参数 | SD | AI | ||||
---|---|---|---|---|---|---|
单能组 | 单能+MARs组 | Z | 单能组 | 单能+MARs组 | Z | |
70 keV | 141.61(111.79,239.71) | 67.81(36.86,86.85) | 4.782** | 134.53(106.20,227.73) | 64.42(35.02,82.50) | 4.782** |
80 keV | 91.64(75.65,199.00) | 52.46(29.01,71.35) | 4.782** | 87.06(71.87,189.057) | 49.84(27.56,67.78) | 4.782** |
90 keV | 60.61(52.50,176.52) | 43.03(22.11,58.33) | 4.782** | 57.58(49.87,167.69) | 40.88(21.01,55.41) | 4.782** |
100 keV | 51.66(39.32,162.03) | 38.11(19.81,54.23) | 4.782** | 49.08(37.35,153.93) | 36.20(18.82,51.52) | 4.782** |
110 keV | 46.64(29.51,152.62) | 32.34(17.65,48.31) | 4.782** | 44.31(28.03,144.99) | 30.73(16.77,45.89) | 4.782** |
120 keV | 41.82(27.14,146.03) | 28.43(16.54,44.17) | 4.783** | 39.73(25.79,138.729) | 27.01(15.71,41.95) | 4.782** |
130 keV | 37.39(26.64,141.62) | 25.46(16.03,41.073) | 4.721** | 35.53(25.31,134.54) | 24.19(15.23,39.02) | 4.721** |
140 keV | 34.79(27.15,138.15) | 23.38(15.82,38.65) | 4.720** | 33.05(25.79,131.25) | 22.21(15.02,36.72) | 4.720** |
χ2 | 195.011** | 208.233** | 195.011** | 208.233** |
表1 镍铬合金组义齿不同成像参数下影像噪声及伪影指数比较 (n=30,HU)
Tab.1 Comparison of image noise and artifact index between different imaging parameters of the nichcr group
成像参数 | SD | AI | ||||
---|---|---|---|---|---|---|
单能组 | 单能+MARs组 | Z | 单能组 | 单能+MARs组 | Z | |
70 keV | 141.61(111.79,239.71) | 67.81(36.86,86.85) | 4.782** | 134.53(106.20,227.73) | 64.42(35.02,82.50) | 4.782** |
80 keV | 91.64(75.65,199.00) | 52.46(29.01,71.35) | 4.782** | 87.06(71.87,189.057) | 49.84(27.56,67.78) | 4.782** |
90 keV | 60.61(52.50,176.52) | 43.03(22.11,58.33) | 4.782** | 57.58(49.87,167.69) | 40.88(21.01,55.41) | 4.782** |
100 keV | 51.66(39.32,162.03) | 38.11(19.81,54.23) | 4.782** | 49.08(37.35,153.93) | 36.20(18.82,51.52) | 4.782** |
110 keV | 46.64(29.51,152.62) | 32.34(17.65,48.31) | 4.782** | 44.31(28.03,144.99) | 30.73(16.77,45.89) | 4.782** |
120 keV | 41.82(27.14,146.03) | 28.43(16.54,44.17) | 4.783** | 39.73(25.79,138.729) | 27.01(15.71,41.95) | 4.782** |
130 keV | 37.39(26.64,141.62) | 25.46(16.03,41.073) | 4.721** | 35.53(25.31,134.54) | 24.19(15.23,39.02) | 4.721** |
140 keV | 34.79(27.15,138.15) | 23.38(15.82,38.65) | 4.720** | 33.05(25.79,131.25) | 22.21(15.02,36.72) | 4.720** |
χ2 | 195.011** | 208.233** | 195.011** | 208.233** |
成像参数 | SD | AI | ||||
---|---|---|---|---|---|---|
单能组 | 单能+MARs组 | Z | 单能组 | 单能+MARs组 | Z | |
70 keV | 101.15(79.85,171.22) | 50.23(27.31,64.33) | 4.782** | 96.10(75.86,162.66) | 47.72(25.94,61.12) | 4.782** |
80 keV | 65.46(54.04,142.15) | 38.86(21.4,52.85) | 4.782** | 62.19(51.34,135.044) | 36.92(20.42,50.21) | 4.782** |
90 keV | 43.29(37.50,126.09) | 31.88(16.39,43.21) | 4.782** | 41.13(35.63,119.78) | 30.29(15.56,41.04) | 4.782** |
100 keV | 36.90(28.09,115.74) | 26.28(13.66,37.40) | 4.782** | 35.06(26.69,109.95) | 24.97(12.99,35.53) | 4.782** |
110 keV | 33.32(21.08,109.02) | 22.31(12.17,33.31) | 4.782** | 31.65(20.03,103.57) | 21.19(11.57,31.65) | 4.782** |
120 keV | 29.87(19.39,104.31) | 19.61(11.41,30.46) | 4.782** | 28.38(18.42,99.09) | 18.63(10.84,28.94) | 4.782** |
130 keV | 26.71(19.03,101.16) | 17.56(11.06,28.33) | 4.782** | 25.38(18.08,96.10) | 16.68(10.51,26.91) | 4.782** |
140 keV | 24.85(19.39,98.68) | 16.12(10.91,26.65) | 4.782** | 23.60(18.42,93.75) | 15.32(10.36,25.32) | 4.782** |
χ2 | 195.011** | 205.911** | 195.011** | 204.811** |
表2 烤瓷组义齿不同成像参数下影像噪声及伪影指数比较 (n=30,HU)
Tab.2 Comparison of image noise and artifact index between porcelain dentures with different imaging parameters
成像参数 | SD | AI | ||||
---|---|---|---|---|---|---|
单能组 | 单能+MARs组 | Z | 单能组 | 单能+MARs组 | Z | |
70 keV | 101.15(79.85,171.22) | 50.23(27.31,64.33) | 4.782** | 96.10(75.86,162.66) | 47.72(25.94,61.12) | 4.782** |
80 keV | 65.46(54.04,142.15) | 38.86(21.4,52.85) | 4.782** | 62.19(51.34,135.044) | 36.92(20.42,50.21) | 4.782** |
90 keV | 43.29(37.50,126.09) | 31.88(16.39,43.21) | 4.782** | 41.13(35.63,119.78) | 30.29(15.56,41.04) | 4.782** |
100 keV | 36.90(28.09,115.74) | 26.28(13.66,37.40) | 4.782** | 35.06(26.69,109.95) | 24.97(12.99,35.53) | 4.782** |
110 keV | 33.32(21.08,109.02) | 22.31(12.17,33.31) | 4.782** | 31.65(20.03,103.57) | 21.19(11.57,31.65) | 4.782** |
120 keV | 29.87(19.39,104.31) | 19.61(11.41,30.46) | 4.782** | 28.38(18.42,99.09) | 18.63(10.84,28.94) | 4.782** |
130 keV | 26.71(19.03,101.16) | 17.56(11.06,28.33) | 4.782** | 25.38(18.08,96.10) | 16.68(10.51,26.91) | 4.782** |
140 keV | 24.85(19.39,98.68) | 16.12(10.91,26.65) | 4.782** | 23.60(18.42,93.75) | 15.32(10.36,25.32) | 4.782** |
χ2 | 195.011** | 205.911** | 195.011** | 204.811** |
成像参数 | SD | AI | ||||
---|---|---|---|---|---|---|
单能组 | 单能+MARs | Z | 单能组 | 单能+MARs | Z | |
70 keV | 144.40(102.23,229.82) | 62.61(38.31,88.50) | 5.511** | 134.39(94.54,213.88) | 58.03(35.56,82.35) | 5.511** |
80 keV | 93.85(75.46,189.39) | 51.63(30.15,71.78) | 5.511** | 87.34(69.76,175.89) | 47.83(27.99,66.81) | 5.511** |
90 keV | 62.58(51.24,165.26) | 43.56(23.28,58.72) | 5.511** | 58.10(47.37,153.53) | 40.36(21.47,54.65) | 5.511** |
100 keV | 50.97(38.79,150.18) | 39.25(20.59,52.98) | 5.511** | 46.79(35.52,138.21) | 36.43(19.11,49.30) | 5.511** |
110 keV | 43.18(30.24,138.63) | 33.31(18.31,47.26) | 5.511** | 39.65(27.70,127.61) | 31.10(16.92,43.98) | 5.511** |
120 keV | 38.80(27.17,112.54) | 29.28(17.12,45.32) | 5.511** | 35.61(25.05,103.58) | 27.2450(15.83,40.31) | 5.511** |
130 keV | 35.04(26.94,90.73) | 26.22(16.66,40.39) | 5.431** | 32.15(24.83,83.50) | 24.41(15.470,37.59) | 5.430** |
140 keV | 33.48(26.89,88.88) | 24.08(16.38,38.13) | 5.430** | 30.58(25.65,82.03) | 22.41(15.24,35.48) | 5.430** |
χ2 | 265.367** | 277.925** | 258.300** | 279.075** |
表3 胶托+不锈钢托组义齿不同成像参数下影像噪声及伪影指数比较 (n=40,HU)
Tab.3 Comparison of image noise and artifact index between rubber and stainless steel bracket dentures with different imaging parameters
成像参数 | SD | AI | ||||
---|---|---|---|---|---|---|
单能组 | 单能+MARs | Z | 单能组 | 单能+MARs | Z | |
70 keV | 144.40(102.23,229.82) | 62.61(38.31,88.50) | 5.511** | 134.39(94.54,213.88) | 58.03(35.56,82.35) | 5.511** |
80 keV | 93.85(75.46,189.39) | 51.63(30.15,71.78) | 5.511** | 87.34(69.76,175.89) | 47.83(27.99,66.81) | 5.511** |
90 keV | 62.58(51.24,165.26) | 43.56(23.28,58.72) | 5.511** | 58.10(47.37,153.53) | 40.36(21.47,54.65) | 5.511** |
100 keV | 50.97(38.79,150.18) | 39.25(20.59,52.98) | 5.511** | 46.79(35.52,138.21) | 36.43(19.11,49.30) | 5.511** |
110 keV | 43.18(30.24,138.63) | 33.31(18.31,47.26) | 5.511** | 39.65(27.70,127.61) | 31.10(16.92,43.98) | 5.511** |
120 keV | 38.80(27.17,112.54) | 29.28(17.12,45.32) | 5.511** | 35.61(25.05,103.58) | 27.2450(15.83,40.31) | 5.511** |
130 keV | 35.04(26.94,90.73) | 26.22(16.66,40.39) | 5.431** | 32.15(24.83,83.50) | 24.41(15.470,37.59) | 5.430** |
140 keV | 33.48(26.89,88.88) | 24.08(16.38,38.13) | 5.430** | 30.58(25.65,82.03) | 22.41(15.24,35.48) | 5.430** |
χ2 | 265.367** | 277.925** | 258.300** | 279.075** |
图4 胶托+不锈钢托组不同成像参数影像噪声及伪影指数变化趋势图
Fig.4 Variation trend of image noise and artifact index of different imaging parameters in the rubber bracket + stainless steel bracket group
成像参数 | 镍铬合金组(n=30) | ||
---|---|---|---|
单能组 | 单能+MARs组 | Z | |
70 keV | 1.00(1.00,1.00) | 2.50(2.00,3.00) | 4.861** |
80 keV | 1.00(1.00,1.13) | 2.75(2.00,3.00) | 4.903** |
90 keV | 2.00(2.00,3.00) | 3.00(3.00,3.63) | 4.588** |
100 keV | 3.00(2.00,3.00) | 3.00(3.00,3.63) | 4.091** |
110 keV | 3.00(2.00,3.00) | 4.00(3.00,4.00) | 5.150** |
120 keV | 3.00(2.00,3.00) | 3.75(3.00,4.00) | 4.893** |
130 keV | 3.00(3.00,3.00) | 3.00(3.00,4.00) | 2.008* |
140 keV | 3.00(2.50,3.00) | 3.00(3.00,4.00) | 3.017** |
χ2 | 177.093** | 154.020** | |
成像参数 | 烤瓷组(n=30) | ||
单能组 | 单能+MARs组 | Z | |
70 keV | 1.50(1.00,2.00) | 3.00(2.00,4.00) | 4.879** |
80 keV | 1.75(1.00,2.00) | 3.00(2.00,4.00) | 4.880** |
90 keV | 2.00(2.00,3.00) | 3.25(2.00,4.00) | 4.520** |
100 keV | 2.75(2.00,3.00) | 3.50(2.50,4.00) | 4.490** |
110 keV | 3.00(2.00,3.00) | 5.00(4.00,5.00) | 5.062** |
120 keV | 3.00(2.00,3.13) | 4.00(3.50,4.00) | 5.010** |
130 keV | 3.75(2.88,4.00) | 4.00(3.50,4.00) | 3.578** |
140 keV | 3.00(3.00,4.00) | 3.00(3.00,4.00) | 2.598** |
χ2 | 183.634** | 155.189** | |
成像参数 | 胶托+不锈钢托组(n=40) | ||
单能组 | 单能+MARs组 | Z | |
70 keV | 1.00(1.00,1.00) | 2.00(2.00,3.00) | 5.646** |
80 keV | 1.00(1.00,1.00) | 2.00(2.00,3.00) | 5.734** |
90 keV | 2.00(1.50,3.00) | 3.00(3.00,3.00) | 5.351** |
100 keV | 2.00(1.50,3.00) | 3.00(3.00,3.00) | 4.941** |
110 keV | 2.00(2.00,3.00) | 4.00(3.00,4.00) | 5.786** |
120 keV | 2.00(2.00,3.00) | 3.00(3.00,4.00) | 5.746** |
130 keV | 3.00(3.00,3.00) | 3.00(3.00,3.38) | 2.008* |
140 keV | 3.00(3.00,3.00) | 3.00(3.00,3.00) | 3.017** |
χ2 | 238.454** | 215.823** |
表4 不同能量参数下3种材质义齿的主观评分比较
Tab.4 Comparison of subjective scores between three kinds of dentures with different energy parameters
成像参数 | 镍铬合金组(n=30) | ||
---|---|---|---|
单能组 | 单能+MARs组 | Z | |
70 keV | 1.00(1.00,1.00) | 2.50(2.00,3.00) | 4.861** |
80 keV | 1.00(1.00,1.13) | 2.75(2.00,3.00) | 4.903** |
90 keV | 2.00(2.00,3.00) | 3.00(3.00,3.63) | 4.588** |
100 keV | 3.00(2.00,3.00) | 3.00(3.00,3.63) | 4.091** |
110 keV | 3.00(2.00,3.00) | 4.00(3.00,4.00) | 5.150** |
120 keV | 3.00(2.00,3.00) | 3.75(3.00,4.00) | 4.893** |
130 keV | 3.00(3.00,3.00) | 3.00(3.00,4.00) | 2.008* |
140 keV | 3.00(2.50,3.00) | 3.00(3.00,4.00) | 3.017** |
χ2 | 177.093** | 154.020** | |
成像参数 | 烤瓷组(n=30) | ||
单能组 | 单能+MARs组 | Z | |
70 keV | 1.50(1.00,2.00) | 3.00(2.00,4.00) | 4.879** |
80 keV | 1.75(1.00,2.00) | 3.00(2.00,4.00) | 4.880** |
90 keV | 2.00(2.00,3.00) | 3.25(2.00,4.00) | 4.520** |
100 keV | 2.75(2.00,3.00) | 3.50(2.50,4.00) | 4.490** |
110 keV | 3.00(2.00,3.00) | 5.00(4.00,5.00) | 5.062** |
120 keV | 3.00(2.00,3.13) | 4.00(3.50,4.00) | 5.010** |
130 keV | 3.75(2.88,4.00) | 4.00(3.50,4.00) | 3.578** |
140 keV | 3.00(3.00,4.00) | 3.00(3.00,4.00) | 2.598** |
χ2 | 183.634** | 155.189** | |
成像参数 | 胶托+不锈钢托组(n=40) | ||
单能组 | 单能+MARs组 | Z | |
70 keV | 1.00(1.00,1.00) | 2.00(2.00,3.00) | 5.646** |
80 keV | 1.00(1.00,1.00) | 2.00(2.00,3.00) | 5.734** |
90 keV | 2.00(1.50,3.00) | 3.00(3.00,3.00) | 5.351** |
100 keV | 2.00(1.50,3.00) | 3.00(3.00,3.00) | 4.941** |
110 keV | 2.00(2.00,3.00) | 4.00(3.00,4.00) | 5.786** |
120 keV | 2.00(2.00,3.00) | 3.00(3.00,4.00) | 5.746** |
130 keV | 3.00(3.00,3.00) | 3.00(3.00,3.38) | 2.008* |
140 keV | 3.00(3.00,3.00) | 3.00(3.00,3.00) | 3.017** |
χ2 | 238.454** | 215.823** |
图5 烤瓷义齿植入在3种不同参数条件下的对比效果 A:QC图像,义齿周围大量条片状明暗相间高密度硬化伪影及低密度暗区;B:单能谱110 keV影像,义齿周围金属伪影较QC减少;C:110 keV+MARs影像;主观评分分别为2.5分、3.0分、4.5分。
Fig.5 Comparative effect of porcelain denture implantation under three different parameters
图6 3种材质义齿最佳成像参数(110 keV+MARs)影像比较 A、B、C分别为110 keV+MARs烤瓷义齿、镍铬合金义齿及胶托-不锈钢托义齿影像;主观评分分别为5.0分、4.5分、4.5分。
Fig.6 Comparison of the best imaging parameters (110 keV+MARs) between three kinds of dentures
[1] | 王欣, 陈刘成, 沈龙山, 等. CT能谱成像基本原理及其临床应用进展[J]. 中国中西医结合影像学杂志, 2021, 19(2):197-200. |
WANG X, CHEN L C, SHEN L S, et al. The basic principle of CT energy spectrum imaging and its clinical application[J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2021, 19(2):197-200. doi:10.3969/j.issn.1672-0512.2021.02.027. | |
[2] | 解琪琪, 史卫东, 李文洲, 等. 宝石能谱CT在骨骼系统中的应用进展[J]. 中国医学物理学杂志, 2019, 36(10):1173-1176. |
XIE Q Q, SHI W D, LI W Z, et al. Progress on the application of gemstone spectral CT in skeletal system[J]. Chinese Journal of Medical Physics, 2019, 36(10):1173-1176. doi:10.3969/j.issn.1005-202X.2019.10.011. | |
[3] | 孙强, 牛志兴, 郑宏雨, 等. 多物质伪影降低技术对五种口腔修复材料能谱CT伪影消除作用初探[J]. 中华口腔医学杂志, 2019, 54(11):760-764. |
SUN Q, NIU Z X, ZHENG H Y, et al. Preliminary study on the elimination of artifacts of five kinds of dental prosthetic materials by energy spectrum CT multi-material artifact reduction technology[J]. Chin J Stomatol, 2019, 54(11):760-764. doi:10.3760/cma.j.issn.1002-0098.2019.11.007 | |
[4] | 林晓霞, 王文娟, 赵兴圣, 等. 能谱成像技术减少口腔修复材料金属伪影的应用价值[J]. 临床放射学杂志, 2017, 36(12):1868-1872. |
LIN X X, WANG W J, ZHAO X S, et al. The value of spectral imaging in reducing dental restoration material artifacts[J]. Journal of Clinical Radiology, 2017, 36(12):1868-1872. doi:10.13437/j.cnki.jcr.2017.12.036. | |
[5] | 宁志光, 马国峰, 于远, 等. 宽体探测器CT多物质伪影降低技术对CT扫描图像质量的影响[J]. 中华放射学杂志, 2017, 51(10):790-793. |
NING Z G, MA G F, YU Y, et al. The effect of a multi-material artifact reduction algorithm in a wide-detector CT system to reduce the beam hardening artifacts in CT imaging[J]. Chin J Radiol, 2017, 51(10):790-793. doi:10.3760/cma.j.issn.1005-1201.2017.10.014. | |
[6] | KORDBACHEH H, BALIYAN V, UPPOT R N, et al. Dual-source dual-energy CT in detection and characterization of urinary stones in patients with largebody habitus:Observations in a large cohort[J]. AJR Am J Roentgenol, 2019, 212(4):796-801. doi:10.2214/AJR.18.20293. |
[7] | LENNARTZ S, LAUKAMP K R, NEUHAUS V,etal. Dual-layer detector CT ofthehead:Initial experience in visualization of intracranial hemorrhageandhypodensebrain lesions using virtual monoenergetic images[J]. Eur J Radiol, 2018, 108:177-183. doi:10.1016/j.ejrad.2018.09.010. |
[8] | 苗振伟, 张璋, 李东, 等. 宝石能谱CT冠状动脉造影评估不同程度冠状动脉狭窄的动态体模研究[J]. 天津医药, 2016, 44(7):869-872. |
MIAO Z W, ZHANG Z, LI D, et al. Evaluation of coronary stenosis by using the gemstone spectral CTCA:a phantom study[J]. Tianjin Med J, 2016, 44(7):869-872. doi:10.11958/20150415. | |
[9] | LONG Z, DELONE D R, KOTSENAS AL, et al. Clinical assessment of metal artifact reduction methods in dual-energy CT examinations of instrumented spines[J]. AJR Am J Roentgenol, 2019, 212(2):395-401. doi:10.2214/AJR.18.19757. |
[10] | 陈小玫. 探讨双能 CT 减金属伪影的应用价值[J]. 影像研究与医学应用, 2017, 1(18):62-64. |
CHEN X M. Discussion on the application value of dual-energy CT to reduce metal artifacts[J]. Journal of Imaging Research and Medical Applications, 2017, 1(18):62-64. | |
[11] | 龙翔, 胡凌, 吴迎澜, 等. CT能谱成像技术去除脊柱金属植入物伪影的临床研究[J]. 当代医学, 2021, 29(2):4-6. |
LONG X, HU L, WU Y L, et al. The clinical study of CT energy spectrum imaging technology in removing artifacts of spinal metal implants[J]. Contemporary Medicine, 2021, 29(2):4-6. doi:.1009-4393.2021.29.00210.3969/j.issn. | |
[12] | 李成龙, 胡春峰. 单能量CT成像结合去金属伪影算法在儿童漏斗胸金属支架植入术后评估中的应用[J]. 影像诊断与介入放射学, 2020, 29(1):37-41. |
LI C L, HU C F. Value of monoenergetic imaging in children with internal fixation of pectus excavatum by thoracic stent[J]. Diagnostic Imaging & Interventional Radiology, 2020, 29(1):37-41. doi:10.3969/j.issn.1005-8001.2020.01.007. | |
[13] | 李艳, 沈倩, 兰永树, 等. 骨去金属伪影技术对腰椎内固定术后 CT图像质量影响的研究[J]. 放射学实践, 2020, 35(3):394-397. |
LI Y, SHEN Q, LAN Y S, et al. The influence of orthopedic mental artifact reduction alforithm on CT image quality for postoprative lumbar fixation[J]. Radiol Practice, 2020, 35(3):394-397. doi:10.13609/j.cnki.1000-0313.2020.03.026. | |
[14] | KIDOH M, UTSUNOMIYA D, IKEDA O, et al. Reduction of metallic coil artefacts in computed tomography body imaging:effects of a new single-energy metal artefact reduction algorithm[J]. Eur Radiol, 2016, 26(5):1378-1386. doi:10.1007/s00330-015-3950-6. |
[15] | 赵立, 胡志海, 刘笑颜, 等. 单能去金属伪影技术改善头颈部软组织图像质量的应用评价[J]. 中日友好医院学报, 2022, 36(1):25-27. |
ZHAO L, HU Z H, LIU X Y, et al. Application of Single energy removal metal artifact technique to improve image quality of head and neck soft tissue[J]. Journal of China-Japan Friendship Hospital, 2022, 36(1):25-27. doi:10.3969/j.issn.1001-0025.2022.01.007. | |
[16] | 魏一娟, 王小鹏, 查开继, 等. 多物质伪影降低技术在口腔金属植入物患者颌面部CT图像中的应用价值[J]. 中华医学杂志, 2021, 101(12):841-845. |
WEI Y J, WANG X P, ZHA K J, et al. The application value of multi-material artifact reduction technique in maxillofacial CT images of patients with metallic dental implants[J]. Natl Med J China, 2021, 101(12):841-845. doi:10.3760/cma.j.cn112137-20210110-00069. |
[1] | 刘霜△, 闫卉. 临床路径在可摘局部义齿修复游离端牙列缺失患者中的应用价值[J]. 天津医药, 2018, 46(2): 195-198. |
[2] | 苗振伟 张璋 李东 于铁链. 宝石能谱CT冠状动脉造影评估不同程度冠状动脉狭窄的动态体模研究[J]. 天津医药, 2016, 44(7): 869-873. |
[3] | 张文佳,张璋△,李东,于铁链. 高清和能谱扫描对冠状动脉支架成像准确性的体模研究[J]. 天津医药, 2015, 43(4): 396-399. |
[4] | 隋磊1 ,刘红红1 ,余培1 ,高平2 . 修正模型印模技术对模型游离端形态及义齿修复效果的影响[J]. , 2014, 42(4): 352-355 . |
[5] | 杨光艳1 ,宋海峰2 ,张健3 . 重度牙周炎致无牙颌患者种植修复的中短期的临床观察[J]. , 2012, 40(9): 960-961 . |
[6] | 崔荣智. Ufi Gel Sc加压聚合软衬对全口义齿的影响及效果观察[J]. , 2011, 39(9): 866-867 . |
[7] | 朱东望1 ,刘亚林2 . 单个种植体即刻负重的临床疗效观察[J]. , 2010, 38(4): 0-0 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||