[1] |
鲍布和, 张琪, 李海林, 等. 血常规比值参数在类风湿关节炎中的诊断价值[J]. 天津医药, 2023, 51(11):1271-1275.
|
|
BAO B H, ZHANG Q, LI H L, et al. Diagnostic value of blood cell count-derived ratio parameters in rheumatoid arthritis[J]. Tianjin Med J, 2023, 51(11):1271-1275. doi:10.11958/20230481.
|
[2] |
CHAE B J, LEE K S, HWANG I, et al. Extracellular acidification augments NLRP3-mediated inflammasome signaling in macrophages[J]. Immune Netw, 2023, 23(3):e23. doi:10.4110/in.2023.23.e23.
|
[3] |
CEHAKOVA M, IVANISOVA D, STRECANSKA M, et al. Rheumatoid synovial fluid and acidic extracellular pH modulate the immunomodulatory activity of urine-derived stem cells[J]. Int J Mol Sci, 2023, 24(21):15856. doi:10.3390/ijms242115856.
|
[4] |
YODER N, YOSHIOKA C, GOUAUX E. Gating mechanisms of acid-sensing ion channels[J]. Nature, 2018, 555(7696):397-401. doi:10.1038/nature25782.
|
[5] |
XU Y, ZAI Z, ZHANG T, et al. Nesfatin-1 exerts protective effects on acidosis-stimulated chondrocytes and rats with adjuvant-induced arthritis by inhibiting ASIC1a expression[J]. Lab Invest, 2022, 102(8):859-871. doi:10.1038/s41374-022-00774-y.
|
[6] |
CHEN X, JAISWAL A, COSTLIOW Z, et al. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells[J]. Nat Immunol, 2022, 23(7):1063-1075. doi:10.1038/s41590-022-01231-0.
|
[7] |
TEIXEIR A J, BASIT F, SWARTS H G, et al. Extracellular acidification induces ROS- and mPTP-mediated death in HEK293 cells[J]. Redox Biol, 2018, 15:394-404. doi:10.1016/j.redox.2017.12.018.
|
[8] |
ZOU B, LIU J, KLIONSKY D J, et al. Extracellular SQSTM1 as an inflammatory mediator[J]. Autophagy, 2020, 16(12):2313-2315. doi:10.1080/15548627.2020.1843253.
|
[9] |
GASTELUM G, VEENA M, LYONS K, et al. Can targeting hypoxia-mediated acidification of the bone marrow microenvironment kill myeloma tumor cells?[J]. Front Oncol, 2021, 11:703878. doi:10.3389/fonc.2021.703878.
|
[10] |
张蒙, 王新东. 黄芪丹参配伍调控ASIC1a/CaMKⅡδ信号抑制酸性微环境中心肌细胞焦亡[J]. 南京中医药大学学报, 2023, 39(2):138-145.
|
|
ZHANG M, WANG X D. Huang qi-Dan shen in the regulation of ASIC1a/CaMKⅡδ signaling to inhibit cardiomyocytes form pyroptosis in acidic microenvironment[J]J Nanjing Univ Tradit Chin Med, 2023, 39(2):138-145. doi:10.14148/j.issn.1672-0482.2023.0138
|
[11] |
FLOUDAS A, NETO N, MARZAIOLI V, et al. Pathogenic, glycolytic PD-1+ B cells accumulate in the hypoxic RA joint[J]. JCI Insight, 2020, 5(21):e139032. doi:10.1172/jci.insight.139032.
|
[12] |
OKAJIMA F. Regulation of inflammation by extracellular acidification and proton-sensing GPCRs[J]. Cell Signal, 2013, 25(11):2263-2271. doi:10.1016/j.cellsig.2013.07.022.
|
[13] |
BEHNEN M, MÖLLER S, BROZEK A, et al. Extracellular acidification inhibits the ROS-dependent formation of neutrophil extracellular traps[J]. Front Immunol, 2017, 8:184. doi:10.3389/fimmu.2017.00184.
|
[14] |
JIANG W, LE J, WANG P Y, et al. Extracellular acidity reprograms macrophage metabolism and innate responsiveness[J]. J Immunol, 2021, 206(12):3021-3031. doi:10.4049/jimmunol.2100014.
|
[15] |
TONG L, YUE P, YANG Y, et al. Motility and mechanical properties of dendritic cells deteriorated by extracellular acidosis[J]. Inflammation, 2021, 44(2):737-745. doi:10.1007/s10753-020-01373-z.
|
[16] |
RAJAMÄKI K, NORDSTRÖM T, NURMI K, et al. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome[J]. J Biol Chem, 2013, 288(19):13410-13419. doi:10.1074/jbc.M112.426254.
|
[17] |
AVNET S, DI POMPO G, LEMMA S, et al. Cause and effect of microenvironmental acidosis on bone metastases[J]. Cancer Metastasis Rev, 2019, 38(1/2):133-147. doi:10.1007/s10555-019-09790-9.
|
[18] |
NYENWE E A, KITABCHI A E. The evolution of diabetic ketoacidosis:an update of its etiology,pathogenesis and management[J]. Metabolism, 2016, 65(4):507-521. doi:10.1016/j.metabol.2015.12.007.
|
[19] |
WEIN M N, SPATZ J, NISHIMORI S, et al. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes[J]. J Bone Miner Res, 2015, 30(3):400-411. doi:10.1002/jbmr.2381.
|
[20] |
IKEZAKI-AMADA K, MIYAMOTO Y, SASA K, et al. Extracellular acidification augments sclerostin and osteoprotegerin production by Ocy454 mouse osteocytes[J]. Biochem Biophys Res Commun, 2022, 597:44-51. doi:10.1016/j.bbrc.2022.01.111.
|
[21] |
MANGO D, NISTICÒ R. Acid-sensing ion channel 1a is involved in N-methyl D-aspartate receptor-dependent long-term depression in the hippocampus[J]. Front Pharmacol, 2019, 10:555. doi:10.3389/fphar.2019.00555.
|
[22] |
ZHANG X H, ŠARIĆ T, MEHRJARDI N Z, et al. Acid-sensitive ion channels are expressed in human induced pluripotent stem cell-derived cardiomyocytes[J]. Stem Cells Dev, 2019, 28(14):920-932. doi:10.1089/scd.2018.0234.
|
[23] |
MANGO D, NISTICÒ R. Role of ASIC1a in normal and pathological synaptic plasticity[J]. Rev Physiol Biochem Pharmacol, 2020, 177:83-100. doi:10.1007/112_2020_45.
|
[24] |
TAO J, LU Z, SU J, et al. ASIC1a promotes the proliferation of synovial fibroblasts via the ERK/MAPK pathway[J]. Lab Invest, 2021, 101(10):1353-1362. doi:10.1038/s41374-021-00636-z.
|
[25] |
杨越, 李露, 崔玮璐, 等. Ca2+与类风湿关节炎的相关性研究[J]. 中国中医基础医学杂志, 2021, 27(10):1602-1605,1618.
|
|
YANG Y, LI L, CUI W L, et al. Correlation between Ca2+and rheumatoid arthritis[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2021, 27(10):1602-1605,1618. doi:10.19945/j.cnki.issn.1006-3250.2021.10.020.
|
[26] |
ZHANG Y, QIAN X, YANG X, et al. ASIC1a induces synovial inflammation via the Ca2+/NFATc3/ RANTES pathway[J]. Theranostics, 2020, 10(1):247-264. doi:10.7150/thno.37200.
|
[27] |
ZU S Q, FENG Y B, ZHU C J, et al. Acid-sensing ion channel 1a mediates acid-induced pyroptosis through calpain-2/calcineurin pathway in rat articular chondrocytes[J]. Cell Biol Int, 2020, 44(10):2140-2152. doi:10.1002/cbin.11422.
|
[28] |
WU X, REN G, ZHOU R, et al. The role of Ca2+ in acid-sensing ion channel 1a-mediated chondrocyte pyroptosis in rat adjuvant arthritis[J]. Lab Invest, 2019, 99(4):499-513. doi:10.1038/s41374-018-0135-3.
|
[29] |
NIU R, HANG X, FENG Y, et al. ASIC1a promotes synovial invasion of rheumatoid arthritis via Ca2+/Rac1 pathway[J]. Int Immunopharmacol, 2020, 79:106089. doi:10.1016/j.intimp.2019.106089.
|
[30] |
HERBERT L M, RESTA T C, JERNIGAN N L. RhoA increases ASIC1a plasma membrane localization and calcium influx in pulmonary arterial smooth muscle cells following chronic hypoxia[J]. Am J Physiol Cell Physiol, 2018, 314(2):C166-C176. doi:10.1152/ajpcell.00159.2017.
|
[31] |
LI M H, LENG T D, FENG X C, et al. Modulation of acid-sensing ion channel 1a by intracellular pH and its role in ischemic stroke[J]. J Biol Chem, 2016, 291(35):18370-18383. doi:10.1074/jbc.M115.713636.
|
[32] |
QIAN X, ZHANG Y, TAO J, et al. Acidosis induces synovial fibroblasts to release vascular endothelial growth factor via acid-sensitive ion channel 1a[J]. Lab Invest, 2021, 101(3):280-291. doi:10.1038/s41374-020-0423-6.
|
[33] |
SHI T, FU X, WANG F, et al. The WNT/β-catenin signalling pathway induces chondrocyte apoptosis in the cartilage injury caused by T-2 toxin in rats[J]. Toxicon, 2021, 204:14-20. doi:10.1016/j.toxicon.2021.11.003.
|
[34] |
MA G, YANG Y, CHEN Y, et al. Blockade of TRPM7 Alleviates chondrocyte apoptosis and articular cartilage damage in the adjuvant arthritis rat model through regulation of the indian hedgehog signaling pathway[J]. Front Pharmacol, 2021, 12:655551. doi:10.3389/fphar.2021.655551.
|
[35] |
RONG C, CHEN F H, JIANG S, et al. Inhibition of acid-sensing ion channels by amiloride protects rat articular chondrocytes from acid-induced apoptosis via a mitochondrial-mediated pathway[J]. Cell Biol Int, 2012, 36(7):635-641. doi:10.1042/CBI20110432.
|
[36] |
代贝贝, 祖胜芹, 周仁鹏, 等. ASIC1基因敲除对佐剂性关节炎小鼠关节软骨损伤的影响[J]. 安徽医科大学学报, 2023, 58(4):567-572.
|
|
DAI B B, ZU S Q, ZHOU R P, et al. Effects of ASIC1 knockout on articular cartilage injury in adjuvant arthritis of mice[J]. Acta Universitatis Medicinalis Anhui, 2023, 58(4):567-572. doi:10.19405/j.cnki.issn1000-1492.2023.04.008.
|
[37] |
ZHOU R P, DAI B B, XIE Y Y, et al. Interleukin-1β and tumor necrosis factor-α augment acidosis-induced rat articular chondrocyte apoptosis via nuclear factor-kappaB-dependent upregulation of ASIC1a channel[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(1):263-264. doi:10.1016/j.bbadis.2018.05.021.
|
[38] |
ZAI Z, XU Y, QIAN X, et al. Estrogen antagonizes ASIC1a-induced chondrocyte mitochondrial stress in rheumatoid arthritis[J]. J Transl Med, 2022, 20(1):561. doi:10.1186/s12967-022-03781-1.
|
[39] |
代贝贝. 酸敏感离子通道1a通过调节AMPK/FoxO3a信号转导通路介导胞外酸化诱导的大鼠关节软骨细胞的自噬[D]. 合肥: 安徽医科大学, 2018.
|
|
DAI B B. Acid-sensing ion channel 1a mediates acid-induced autophagy in rat articular chondrocytes through the AMPK/FoxO3a pathway[D]. Hefei: Anhui Medical University, 2018.
|
[40] |
HANG X, ZHANG Z, NIU R, et al. Estrogen protects articular cartilage by downregulating ASIC1a in rheumatoid arthritis[J]. J Inflamm Res, 2021, 14:843-858. doi:10.2147/JIR.S295222.
|
[41] |
YANG Y, DING J, CHEN Y, et al. Blockade of ASIC1a inhibits acid-induced rat articular chondrocyte senescence through regulation of autophagy[J]. Hum Cell, 2022, 35(2):665-677. doi:10.1007/s13577-022-00676-7.
|
[42] |
SUN C, WANG S, HU W. Acid-sensing ion channel 1a mediates acid-induced inhibition of matrix metabolism of rat articular chondrocytes via the MAPK signaling pathway[J]. Mol Cell Biochem, 2018, 443(1/2):81-91. doi:10.1007/s11010-017-3212-9.
|