[1] |
LIN M J, SVENSSON-ARVELUND J, LUBITZ G S, et al. Cancer vaccines:the next immunotherapy frontier[J]. Nat Cancer, 2022, 3(8):911-926. doi:10.1038/s43018-022-00418-6.
|
[2] |
BLASS E, OTT P A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18(4):215-229. doi:10.1038/s41571-020-00460-2.
|
[3] |
AIKINS M E, XU C, MOON J J. Engineered nanoparticles for cancer vaccination and immunotherapy[J]. Acc Chem Res, 2020, 53(10):2094-2105. doi:10.1021/acs.accounts.0c00456.
|
[4] |
CALLMANN C E, COLE L E, KUSMIERZ C D, et al. Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer[J]. Proc Natl Acad Sci U S A, 2020, 117(30):17543-17550. doi:10.1073/pnas.2005794117.
|
[5] |
SONG K, PUN S H. Design and evaluation of synthetic delivery formulations for peptide-based cancer Vaccines[J]. BME Front, 2024, 5:0038. doi:10.34133/bmef.0038.
|
[6] |
KOIRALA P, SHALASH A O, CHEN S R, et al. Polymeric nanoparticles as oral and intranasal peptide vaccine delivery systems:the role of shape and conjugation[J]. Vaccines (Basel), 2024, 12(2):198. doi:10.3390/vaccines12020198.
|
[7] |
HUANG J, WANG K, WU S, et al. Tumor cell lysate-based multifunctional nanoparticles facilitate enhanced mrna delivery and immune stimulation for melanoma gene therapy[J]. Mol Pharm, 2024, 21(1):267-282. doi:10.1021/acs.molpharmaceut.3c00826.
|
[8] |
DIAO L, LIU M. Rethinking antigen source:cancer vaccines based on whole tumor cell/tissue lysate or whole tumor cell[J]. Adv Sci(Weinh), 2023, 10(22):e2300121. doi:10.1002/advs.202300121.
|
[9] |
FAN W, XIA D, ZHU Q, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery[J]. Biomaterials, 2018, 151:13-23. doi:10.1016/j.biomaterials.2017.10.022.
|
[10] |
FAN W, WEI Q, XIANG J, et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery[J]. Adv Mater, 2022, 34(16):e2109189. doi:10.1002/adma.202109189.
|
[11] |
XU C, XU H, ZHU Z, et al. Recent advances in mucus-penetrating nanomedicines for oral treatment of colonic diseases[J]. Expert Opin Drug Deliv, 2023, 20(10):1371-1385. doi:10.1080/17425247.2023.2242266.
|
[12] |
MA L, DIAO L, PENG Z, et al. Immunotherapy and prevention of cancer by nanovaccines loaded with whole-cell components of tumor tissues or cells[J]. Adv Mater, 2021, 33(43):e2104849. doi:10.1002/adma.202104849.
|
[13] |
JAHANAFROOZ Z, OROOJALIAN F, MOKHTARZADEH A, et al. Nanovaccines:Immunogenic tumor antigens,targeted delivery,and combination therapy to enhance cancer immunotherapy[J]. Drug Dev Res, 2024, 85(5):e22244. doi:10.1002/ddr.22244.
|
[14] |
CONE R A. Barrier properties of mucus[J]. Adv Drug Deliv Rev, 2009, 61(2):75-85. doi:10.1016/j.addr.2008.09.008.
|
[15] |
CZUBA E, DIOP M, MURA C, et al. Oral insulin delivery,the challenge to increase insulin bioavailability:Influence of surface charge in nanoparticle system[J]. Int J Pharm, 2018, 542(1/2):47-55. doi:10.1016/j.ijpharm.2018.02.045.
|
[16] |
HIRAYAMA F, UEKAMA K. Cyclodextrin-based controlled drug release system[J]. Adv Drug Deliv Rev, 1999, 36(1):125-141. doi:10.1016/s0169-409x(98)00058-1.
|
[17] |
ZHENG D, XIA L, JI H, et al. A cyclodextrin-based controlled release system in the simulation of in vitro small intestine[J]. Molecules, 2020, 25(5):1212. doi:10.3390/molecules25051212.
|
[18] |
TOPUZ F, UYAR T. Recent advances in cyclodextrin-based nanoscale drug delivery systems[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2024, 16(6):e1995. doi:10.1002/wnan.1995.
|
[19] |
ZHANG P, HUANG Y, LIU H, et al. A PEG-Fmoc conjugate as a nanocarrier for paclitaxel[J]. Biomaterials, 2014, 35(25):7146-7156. doi:10.1016/j.biomaterials.2014.04.108.
|
[20] |
ZHANG P, LU J, HUANG Y, et al. Design and evaluation of a PEGylated lipopeptide equipped with drug-interactive motifs as an improved drug carrier[J]. AAPS J, 2014, 16(1):114-124. doi:10.1208/s12248-013-9536-9.
|