[1] |
ZUTT R, VAN DER KOOI A J, LINTHORST G E, et al. Rhabdomyolysis:review of the literature[J]. Neuromuscul Disord, 2014, 24(8):651-659. doi:10.1016/j.nmd.2014.05.005.
|
[2] |
CABRAL B, EDDING S N, PORTOCARRERO J P, et al. Rhabdomyolysis[J]. Dis Mon, 2020, 66(8):101015. doi:10.1016/j.disamonth.2020.101015.
|
[3] |
KODADEK L, CARMICHAEL Ⅱ S P, SESHADRI A, et al. Rhabdomyolysis:An American Association for the Surgery of Trauma Critical Care Committee Clinical Consensus Document[J]. Trauma Surg Acute Care Open, 2022, 7(1):e000836. doi:10.1136/tsaco-2021-000836.
|
[4] |
DANTAS G, DE ALKMIM MOREIRA NUNES R, CASIMIRO-LOPES G, et al. Analysis of physiological markers and risk factors for the development of rhabdomyolysis in military personnel:A systematic review[J]. Rev Environ Health, 2022. doi:10.1515/reveh-2022-0038.[Online ahead of print].
|
[5] |
CAI Y, HUANG C, ZHOU M, et al. Role of curcumin in the treatment of acute kidney injury:research challenges and opportunities[J]. Phytomedicine, 2022, 104:154306. doi:10.1016/j.phymed.2022.154306.
|
[6] |
ZHANG J, WANG B, YUAN S, et al. The role of ferroptosis in acute kidney injury[J]. Front Mol Biosci, 2022, 9:951275. doi:10.3389/fmolb.2022.951275.
|
[7] |
CHOU Y T, KAN W C, SHIAO C C. Acute kidney injury and gut dysbiosis:A narrative review focus on pathophysiology and treatment[J]. Int J Mol Sci, 2022, 23(7):3658. doi:10.3390/ijms23073658.
|
[8] |
LIU Y, LI M, TEH L, et al. Emodin-mediated treatment of acute kidney injury[J]. Evid Based Complement Alternat Med, 2022, 2022:5699615. doi:10.1155/2022/5699615.
|
[9] |
JIN H, LIN X, LIU Z, et al. Remote ischemic postconditioning protects against crush-induced acute kidney injury via down-regulation of apoptosis and senescence[J]. Eur J Trauma Emerg Surg, 2022, 48(6):4585-4593. doi:10.1007/s00068-022-01910-5.
|
[10] |
LIN X, JIN H, CHAI Y, et al. Cellular senescence and acute kidney injury[J]. Pediatr Nephrol, 2022, 37(12):3009-3018. doi:10.1007/s00467-022-05532-2.
|
[11] |
BOSS K, KRIBBEN A. Treatment and progression management of acute kidney injury[J]. Dtsch Med Wochenschr, 2022, 147(5):246-252. doi:10.1055/a-1557-6909.
|
[12] |
PLOS ONE Staff. Correction:Penehyclidine hydrochloride pretreatment ameliorates rhabdomyolysis-induced AKI by activating the Nrf2/HO-1 pathway and allevi-ating endoplasmic reticulum stress in rats[J]. PLoS One, 2016, 11(4):e0154138. doi:10.1371/journal.pone.0154138.
|
[13] |
BOUDHABHAY I, POILLERAT V, GRUNENWALD A, et al. Complement activation is a crucial driver of acute kidney injury in rhabdomyolysis[J]. Kidney Int, 2021, 99(3):581-597. doi:10.1016/j.kint.2020.09.033.
|
[14] |
MARD S A, HOSEINYNEJAD K, NEJADDEHBASHI F. Gallic acid improves therapeutic effects of mesenchymal stem cells derived from adipose tissue in acute renal injury following rhabdomyolysis induced by glycerol[J]. Inflammation, 2022. doi:10.1007/s10753-022-01691-4. [Online ahead of print].
|
[15] |
AKMAL M, MASSRY S G. Reversible hepatic dysfunction associated with rhabdomyolysis[J]. Am J Nephrol, 1990, 10(1):49-52. doi:10.1159/000168053.
|
[16] |
MELILA M, RAJARAM R, GANESHKUMAR A, et al. Assessment of renal and hepatic dysfunction by co-exposure to toxic metals(Cd,Pb)and fluoride in people living nearby an industrial zone[J]. J Trace Elem Med Biol, 2022, 69:126890. doi:10.1016/j.jtemb.2021.126890.
|
[17] |
SHARMA N, GAIKWAD A B. Ameliorative effect of AT2R and ACE2 activation on ischemic renal injury associated cardiac and hepatic dysfunction[J]. Environ Toxicol Pharmacol, 2020, 80:103501. doi:10.1016/j.etap.2020.103501.
|
[18] |
MA X, XU S, LI J, et al. Selenomethionine protected BMECs from inflammatory injury and oxidative damage induced by Klebsiella pneumoniae by inhibiting the NF-κB and activating the Nrf2 signaling pathway[J]. Int Immunopharmacol, 2022, 110:109027. doi:10.1016/j.intimp.2022.109027.
|
[19] |
LARSEN R, GOUVEIA Z, SOARES M P, et al. Heme cytotoxicity and the pathogenesis of immune-mediated inflammatory diseases[J]. Front Pharmacol, 2012, 3:77. doi:10.3389/fphar.2012.00077.
|
[20] |
PAPAGEORGIOU C, JOURDI G, ADJAMBRI E, et al. Disseminated intravascular coagulation:An update on pathogenesis,diagnosis,and therapeutic strategies[J]. Clin Appl Thromb Hemost, 2018, 24(9_suppl):8S-28 S. doi:10.1177/1076029618806424.
|
[21] |
BAATARJAV C, KOMADA T, KARASAWA T, et al. dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury[J]. Cell Death Differ, 2022. doi:10.1038/s41418-022-01033-9. [Online ahead of print].
|
[22] |
LELONGE Y, GAVID M, VIEVILLE M, et al. Tension pneumoperitoneum and acute abdominal compartment syndrome during panendoscopy[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2022: S1879- 7296(22)00067-9. doi:10.1016/j.anorl.2022.06.006.
|
[23] |
RITCHIE E D, VOGELS S, VAN DONGEN T, et al. Systematic review of innovative diagnostic tests for chronic exertional compartment syndrome[J]. Int J Sports Med, 2022. doi:10.1055/a-1866-5957. [Online ahead of print].
|
[24] |
CHEN X, WANG X, HONORE P M, et al. Renal failure in critically ill patients, beware of applying (central venous)pressure on the kidney[J]. Ann Intensive Care, 2018, 8(1):91. doi:10.1186/s13613-018-0439-x.
|
[25] |
KIM H W, KIM S, OHN J H, et al. Role of bicarbonate and volume therapy in the prevention of acute kidney injury in rhabdomyolysis:A retrospective propensity score-matched cohort study[J]. Kidney Res Clin Pract, 2022, 41(3):310-321. doi:10.23876/j.krcp.21.093.
|
[26] |
PEZZI M, GIGLIO A M, SCOZZAFAVA A, et al. Early intensive treatment to prevent kidney failure in post-traumatic rhabdomyolysis:Case report[J]. SAGE Open Med Case Rep, 2019, 7:2050313X19839529. doi:10.1177/2050313X19839529.
|
[27] |
BROWN C V, RHEE P, CHAN L, et al. Preventing renal failure in patients with rhabdomyolysis:do bicarbonate and mannitol make a difference?[J]. J Trauma, 2004, 56(6):1191-1196. doi:10.1097/01.ta.0000130761.78627.10.
|
[28] |
ZHENG T, LIU L, LIU J, et al. Rhabdomyolysis happened after the start of dabigatran etexilate treatment:A case report[J]. J Musculoskelet Neuronal Interact, 2022, 22(2):296-300.
|
[29] |
陈艾萍, 王建文, 伍宏. 不同血液净化模式治疗横纹肌溶解症的疗效比较[J]. 中华卫生应急电子杂志, 2020, 6(6):332-336.
|
|
CHEN A P, WANG J W, WU H. Comparison of different blood purification modes in rhabdomyolysis[J]. Chinese Journal Hygiene Rescue, 2020, 6(6):332-336. doi:10.3877/cma.j.issn.2095-9133.2020.06.002.
|
[30] |
GUPTA A, THORSON P, PENMATSA K R, et al. Rhabdomyolysis:Revisited[J]. Ulster Med J, 2021, 90(2):61-69.
|
[31] |
YANG X Y, SONG J, HOU S K, et al. Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells[J]. Int Immunopharmacol, 2020, 81:106265. doi:10.1016/j.intimp.2020.106265.
|
[32] |
WANG J, XU G, JIN H, et al. Ulinastatin alleviates rhabdomyolysis-induced acute kidney injury by suppressing inflammation and apoptosis via inhibiting TLR4/NF-κB signaling pathway[J]. Inflammation, 2022, 45(5):2052-2065. doi:10.1007/s10753-022-01675-4.
|
[33] |
HIGGINS S P, TANG Y, HIGGINS C E, et al. TGF-β1/p53 signaling in renal fibrogenesis[J]. Cell Signal, 2018, 43:1-10. doi:10.1016/j.cellsig.2017.11.005.
|
[34] |
YUQIANG C, LISHA Z, JIEJUN W, et al. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation[J]. Ren Fail, 2022, 44(1):473-481. doi:10.1080/0886022X.2022.2048857.
|
[35] |
GOIS P, CANALE D, VOLPINI R A, et al. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury:Renal and muscular protection[J]. Free Radic Biol Med, 2016, 101:176-189. doi:10.1016/j.freeradbiomed.2016.10.012.
|
[36] |
BOLISETTY S, ZARJOU A, AGARWAL A. Heme oxygenase 1 as a therapeutic target in acute kidney injury[J]. Am J Kidney Dis, 2017, 69(4):531-545. doi:10.1053/j.ajkd.2016.10.037.
|
[37] |
OHTANI S, SHIMIZU H, YAMAOKA M, et al. Protective effect of tin chloride on rhabdomyolysis-induced acute kidney injury in rats[J]. PLoS One, 2022, 17(3):e0265512. doi:10.1371/journal.pone.0265512.
|
[38] |
WANG J, CHEN Z, HOU S, et al. TAK-242 attenuates crush injury induced acute kidney injury through inhibiting TLR4/NF-κB signaling pathways in rats[J]. Prehosp Disaster Med, 2020, 35(6):619-628. doi:10.1017/S1049023X20001132.
|
[39] |
CREAGH-BROWN B C, QUINLAN G J, EVANS T W, et al. The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction:an important therapeutic target?[J]. Intensive Care Med, 2010, 36(10):1644-1656. doi:10.1007/s00134-010-1952-z.
|
[40] |
GUARNERI F, CUSTURONE P, PAPAIANNI V, et al. Involvement of RAGE and oxidative stress in inflammatory and infectious skin diseases[J]. Antioxidants (Basel), 2021, 10(1):82. doi:10.3390/antiox10010082.
|
[41] |
MATSUMOTO H, MATSUMOTO N, SHIMAZAKI J, et al. Therapeutic effectiveness of anti-rage antibody administration in a rat model of crush injury[J]. Sci Rep, 2017, 7(1):12255. doi:10.1038/s41598-017-12065-4.
|
[42] |
VANPATTEN S, AL-ABED Y. High mobility group box-1(HMGb1):Current wisdom and advancement as a potential drug target[J]. J Med Chem, 2018, 61(12):5093-5107. doi:10.1021/acs.jmedchem.7b01136.
|
[43] |
ZHANG B F, WANG P F, CONG Y X, et al. Anti-high mobility group box-1(HMGB1)antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-α and c-Jun N-terminal kinase pathway[J]. J Orthop Surg Res, 2017, 12(1): 110. doi:10.1186/s13018-017-0614-z.
|
[44] |
DUFFY M M, GRIFFIN M D. Back from the brink:a mesenchymal stem cell infusion rescues kidney function in acute experimental rhabdomyolysis[J]. Stem Cell Res Ther, 2014, 5(5):109. doi:10.1186/scrt497.
|
[45] |
WANG S, ZHANG C, LI J, et al. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization[J]. Cell Death Dis, 2017, 8(4):e2725. doi:10.1038/cddis.2017.104.
|