[1] |
SUKERKAR P A, DOYLE Z. Imaging of osteoarthritis of the knee[J]. Radiol Clin North Am, 2022, 60(4):605-616. doi:10.1016/j.rcl.2022.03.004.
|
[2] |
中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组, 国家老年疾病临床医学研究中心湘雅医院, 等. 中国骨关节炎诊疗指南(2021年版)[J]. 中华骨科杂志, 2021(18):1291-1314.
|
|
The Joint Surgery Branch of the Chinese Orthopaedic Association, The Subspecialty Group of Osteoarthritis of the Chinese Association of Orthopaedic Surgeons, The National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), et al. Chinese guideline for diagnosis and treatment of osteoarthritis (2021 edition)[J]. Chin J Orthop, 2021, 41(18):1291-1314. doi:10.3760/cma.j.cn121113-20210624-00424.
|
[3] |
SHIMIZU H, SHIMOURA K, IIJIMA H, et al. Functional manifestations of early knee osteoarthritis:a systematic review and meta-analysis[J]. Clin Rheumatol, 2022, 41(9):2625-2634. doi:10.1007/s10067-022-06150-x.
|
[4] |
ZHANG S L, ZHANG K S, WANG J F, et al. Corresponding changes of autophagy-related genes and proteins in different stages of knee osteoarthritis:an animal model study[J]. Orthop Surg, 2022, 14(3):595-604. doi:10.1111/os.13057.
|
[5] |
JIANG L, MOQBEL SAA, ZHU J, et al. Nesfatin-1 suppresses autophagy of chondrocytes in osteoarthritis via remodeling of cytoskeleton and inhibiting RhoA/ROCK signal pathway[J]. J Orthop Surg Res, 2023, 18(1):153-166. doi:10.1186/s13018-023-03539-5.
|
[6] |
HU S, ZHANG C, NI L, et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy[J]. Cell Death Dis, 2020, 11(6):481-496. doi:10.1038/s41419-020-2680-0.
|
[7] |
WANG W F, LIU S Y, QI Z F, et al. MiR-145 targeting BNIP3 reduces apoptosis of chondrocytes in osteoarthritis through Notch signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(16):8263-8272. doi:10.26355/eurrev_202008_22622.
|
[8] |
LU J, PENG Y, ZOU J, et al. Hypoxia inducible factor-1α is a regulator of autophagy in osteoarthritic chondrocytes[J]. Cartilage, 2021, 13(2_suppl):1030S-1040 S. doi:10.1177/19476035211035434.
|
[9] |
陈明珠, 黄幼霞, 廖婉婷, 等. 隐丹参酮对慢性不可预见应激联合脂多糖所致抑郁小鼠氧化应激和炎症反应的影响[J]. 现代药物与临床, 2022, 37(7):1439-1444.
|
|
CHEN M Z, HUANG Y X, LIAO W T, et al. Effects of cryptotanshinone on oxidative stress and inflammatory response in depressed mice induced by chronic unpredictable stress combined with lipopolysaccharide[J]. Drugs & Clinic, 2022, 37(7):1439-1444.
|
[10] |
YUE S, SU X, TENG J, et al. Cryptotanshinone interferes with chondrocyte apoptosis in osteoarthritis by inhibiting the expression of miR-574-5p[J]. Mol Med Rep, 2021, 23(6):424-433. doi:10.3892/mmr.2021.12063.
|
[11] |
刘晶, 林巧璇, 卢莉铭, 等. 针刀干预对膝骨关节炎兔股直肌组织形态及超微结构的影响[J]. 中国骨伤, 2022, 35(3):281-286.
|
|
LIU J, LIN Q X, LU L M, et al. Effect of acupotomy intervention on the morphology and ultrastructure of rectus femoris muscle in rabbits with knee osteoarthritis[J]. China Journal of Orthopaedics and Traumatology, 2022, 35(3):281-286.
|
[12] |
LEQUESNE M G, SAMSON M. Indices of severity in osteoarthritis for weight bearing joints[J]. J Rheumatol Suppl, 1991, 27:16-18.
|
[13] |
邓紫婷, 文丽, 贾英. 体外冲击波对兔膝骨关节炎软骨组织中转化生长因子β1和白介素1β表达的影响[J]. 中华物理医学与康复杂志, 2022, 44(1):18-24.
|
|
DENG Z T, WEN L, JIA Y. The effects of extracorporeal shock wave treatment on the expression of TGF-β1 and IL-1βin the cartilage of an osteaoarthritic knee[J]. Chin J Phys Med Rehabil, 2022, 44(1):18-24. doi:10.3760/cma.j.issn.0254-1424.2022.01.003.
|
[14] |
CURRY Z A, BELING A, BORG-STEIN J. Knee osteoarthritis in midlife women:unique considerations and comprehensive management[J]. Menopause, 2022, 29(6):748-755. doi:10.1097/GME.0000000000001966.
|
[15] |
MENG Z, LIU J, ZHOU N. Efficacy and safety of the combination of glucosamine and chondroitin for knee osteoarthritis:a systematic review and meta-analysis[J]. Arch Orthop Trauma Surg, 2023, 143(1):409-421. doi:10.1007/s00402-021-04326-9.
|
[16] |
XU K, HE Y, MOQBEL S A A, et al. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway[J]. Int J Biol Macromol, 2021, 175(3):351-360. doi:10.1016/j.ijbiomac.2021.02.029.
|
[17] |
ZHU F, CHEN H, XU M, et al. Cryptotanshinone possesses therapeutic effects on ischaemic stroke through regulating STAT5 in a rat model[J]. Pharm Biol, 2021, 59(1):465-471. doi:10.1080/13880209.2021.1914672.
|
[18] |
石昊, 陈浩, 谭鹏, 等. 隐丹参酮缓解雨蛙素联合脂多糖诱导的小鼠重症急性胰腺炎的作用探讨[J]. 中国中西医结合杂志, 2022, 42(1):83-88.
|
|
SHI H, CHEN H, TAN P, et al. Mitigation effects of cryptotanshinone on severe acute pancreatitis in mice induced by cerulein combined with lipopolysaccharides[J]. Chin J Integr Tradit West Med, 2022, 42(1):83-88.
|
[19] |
WANG P, XIONG X, ZHANG J, et al. Icariin increases chondrocyte vitality by promoting hypoxia-inducible factor-1α expression and anaerobic glycolysis[J]. Knee, 2020, 27(1):18-25. doi:10.1016/j.knee.2019.09.012.
|
[20] |
DENG R, WANG Y, BU Y, et al. BNIP3 mediates the different adaptive responses of fibroblast-like synovial cells to hypoxia in patients with osteoarthritis and rheumatoid arthritis[J]. Mol Med, 2022, 28(1):64-77. doi:10.1186/s10020-022-00490-9.
|
[21] |
KIM D, SONG J, JIN E J. BNIP3-dependent mitophagy via PGC1α promotes cartilage degradation[J]. Cells, 2021, 10(7):1839. doi:10.3390/cells10071839.
|