天津医药 ›› 2024, Vol. 52 ›› Issue (9): 917-923.doi: 10.11958/20240171
收稿日期:
2024-02-02
修回日期:
2024-04-16
出版日期:
2024-09-15
发布日期:
2024-09-06
通讯作者:
△E-mail:作者简介:
高攀(1998),女,硕士在读,主要从事慢性肾脏病和心房颤动相关机制方面研究。E-mail:基金资助:
GAO Pan(), XIE Bingxin, ZHOU Zandong, LIU Tong△(
)
Received:
2024-02-02
Revised:
2024-04-16
Published:
2024-09-15
Online:
2024-09-06
Contact:
△E-mail:高攀, 谢冰歆, 周赞东, 刘彤. 慢性肾脏病循环中FGF23对心房纤维化的促进作用[J]. 天津医药, 2024, 52(9): 917-923.
GAO Pan, XIE Bingxin, ZHOU Zandong, LIU Tong. Promoting effect of circulating FGF23 on atrial fibrosis in chronic kidney disease[J]. Tianjin Medical Journal, 2024, 52(9): 917-923.
摘要:
目的 探究慢性肾脏疾病(CKD)循环中成纤维细胞生长因子(FGF)23通过与心房组织成纤维细胞生长因子受体(FGFR)4结合促进心房纤维化的可能机制。方法 选择健康雄性SD大鼠22只,随机数字表法抽取14只行5/6肾切除手术并且喂养15周建立CKD模型,剩余8只作为假手术(Sham)组。观察2组体质量、血压、肾功能、超声心动图、心外膜电标测以及病理指标。酶联免疫吸附试验测定2组大鼠循环中的FGF23水平,左心房组织转录组测序寻找差异表达基因。大鼠心房成纤维细胞分为对照组、FGFR抑制剂组、转化生长因子-β(TGF-β)组及TGF-β+FGFR抑制剂组,采用Western blot法检测α-平滑肌肌动蛋白(α-SMA)、胶原蛋白Ⅰ(ColⅠ)以及磷酸化蛋白激酶B(p-AKT)蛋白的表达。结果 CKD组大鼠收缩压、肌酐以及血尿素氮水平升高。心脏电生理检查显示CKD可促进心房颤动及房室传导阻滞的发生。心脏超声提示CKD组左心房内径明显增大,病理染色显示CKD组左心房发生明显纤维化,心外膜电标测提示CKD组大鼠左心房电传导速度明显减慢并且传导异质性明显增加。CKD大鼠循环中的FGF23水平明显增加。Western blot检测发现CKD组大鼠FGFR4表达上调。阻断心房成纤维细胞FGF23/FGFR4信号通路后,纤维化相关蛋白α-SMA、ColⅠ及p-AKT/AKT降低。结论 CKD可能通过诱导心房结构重构及电重构促进房颤的发生,循环中增加的FGF23可能通过与心房组织中FGFR4结合启动下游AKT通路,进而促进心房纤维化。
中图分类号:
组别 | 体质量/g | Cr/ (μmol/L) | BUN/ (mmol/L) | 收缩压/ mmHg | |||
---|---|---|---|---|---|---|---|
SHAM组 | 485.60±38.28 | 23.57±8.18 | 168.09±8.66 | 114.17±4.78 | |||
CKD组 | 502.80±28.88 | 58.05±13.57 | 245.09±19.83 | 126.17±6.11 | |||
t | 0.802 | 4.866** | 7.955** | 3.460** | |||
组别 | 平均动脉压/ mmHg | 舒张压/ mmHg | 心脏质量/胫骨 长度/(mg/cm) | ||||
SHAM组 | 100.73±2.31 | 93.94±3.28 | 31.20±4.04 | ||||
CKD组 | 103.42±8.86 | 93.68±9.86 | 44.41±4.46 | ||||
t | 0.657 | 0.057 | 4.907** |
表1 2组大鼠的生化指标及基本特征比较(n=5,$\bar{x}±s$)
Tab.1 Comparison of biochemical indicators and baseline characteristics between the two groups of rats
组别 | 体质量/g | Cr/ (μmol/L) | BUN/ (mmol/L) | 收缩压/ mmHg | |||
---|---|---|---|---|---|---|---|
SHAM组 | 485.60±38.28 | 23.57±8.18 | 168.09±8.66 | 114.17±4.78 | |||
CKD组 | 502.80±28.88 | 58.05±13.57 | 245.09±19.83 | 126.17±6.11 | |||
t | 0.802 | 4.866** | 7.955** | 3.460** | |||
组别 | 平均动脉压/ mmHg | 舒张压/ mmHg | 心脏质量/胫骨 长度/(mg/cm) | ||||
SHAM组 | 100.73±2.31 | 93.94±3.28 | 31.20±4.04 | ||||
CKD组 | 103.42±8.86 | 93.68±9.86 | 44.41±4.46 | ||||
t | 0.657 | 0.057 | 4.907** |
组别 | QT间期/ms | 窦房结恢复时间/ms | 房颤持续时间/s |
---|---|---|---|
Sham组 | 41.60±8.29 | 170.00±8.72 | 1.16±2.59 |
CKD组 | 86.80±10.73 | 206.40±25.63 | 10.02±6.56 |
t | 7.451** | 3.007* | 2.807* |
表2 2组大鼠电生理学参数比较(n=5,$\bar{x}±s$)
Tab.2 Comparison of electrophysiologic parameters between two groups of rats
组别 | QT间期/ms | 窦房结恢复时间/ms | 房颤持续时间/s |
---|---|---|---|
Sham组 | 41.60±8.29 | 170.00±8.72 | 1.16±2.59 |
CKD组 | 86.80±10.73 | 206.40±25.63 | 10.02±6.56 |
t | 7.451** | 3.007* | 2.807* |
组别 | 0周 | 4周 | 8周 | 15周 |
---|---|---|---|---|
SHAM组 | 3.96±0.12 | 3.95±0.36 | 3.96±0.34 | 4.00±0.40 |
CKD组 | 3.98±0.35 | 4.63±0.16 | 4.67±0.38 | 4.81±0.10 |
t | 0.131 | 3.909** | 3.128* | 4.381** |
表3 2组大鼠不同时间段LAD比较(n=5,mm,$\bar{x}±s$)
Tab.3 Comparison of LAD in different time periods between two groups of rats
组别 | 0周 | 4周 | 8周 | 15周 |
---|---|---|---|---|
SHAM组 | 3.96±0.12 | 3.95±0.36 | 3.96±0.34 | 4.00±0.40 |
CKD组 | 3.98±0.35 | 4.63±0.16 | 4.67±0.38 | 4.81±0.10 |
t | 0.131 | 3.909** | 3.128* | 4.381** |
图4 Western blot检测2组大鼠左心房组织中α-SMA、Col Ⅰ蛋白表达
Fig.4 The expression levels of α-SMA and Col Ⅰ protein in left atrium of rats from two groups detected by Western blot assay
组别 | 组织胶原容积分数 | α-SMA | ColⅠ | 左心房传导速度/(mm/ms) | 绝对不均一性/(ms/mm) | 不均匀性指数 |
---|---|---|---|---|---|---|
Sham组 | 2.29±0.67 | 0.26±0.07 | 0.44±0.26 | 0.82±0.18 | 3.82±1.39 | 1.20±0.45 |
CKD组 | 5.12±1.20 | 1.14±0.59 | 1.58±0.58 | 0.39±0.09 | 7.16±2.87 | 3.28±1.22 |
t | 4.634** | 3.322* | 4.020** | 4.780** | 2.343* | 3.578** |
表4 2组大鼠心房结构重构及电重构参数比较(n=5,$\bar{x}±s$)
Tab.4 Comparison of structural remodeling as well as electrical remodeling parameters of atria between two groups of rats
组别 | 组织胶原容积分数 | α-SMA | ColⅠ | 左心房传导速度/(mm/ms) | 绝对不均一性/(ms/mm) | 不均匀性指数 |
---|---|---|---|---|---|---|
Sham组 | 2.29±0.67 | 0.26±0.07 | 0.44±0.26 | 0.82±0.18 | 3.82±1.39 | 1.20±0.45 |
CKD组 | 5.12±1.20 | 1.14±0.59 | 1.58±0.58 | 0.39±0.09 | 7.16±2.87 | 3.28±1.22 |
t | 4.634** | 3.322* | 4.020** | 4.780** | 2.343* | 3.578** |
组别 | FGF23/(ng/L) | FGFR4 |
---|---|---|
Sham组 | 2 771.53±1 393.28 | 0.30±0.27 |
CKD组 | 8 452.75±1 377.41 | 0.97±0.37 |
t | 6.484** | 3.239* |
表5 2组大鼠循环FGF23水平及心房FGFR4蛋白表达比较(n=5,$\bar{x}±s$)
Tab.5 Comparison of circulating FGF23 levels and atrial FGFR4 protein expression between two groups of rats
组别 | FGF23/(ng/L) | FGFR4 |
---|---|---|
Sham组 | 2 771.53±1 393.28 | 0.30±0.27 |
CKD组 | 8 452.75±1 377.41 | 0.97±0.37 |
t | 6.484** | 3.239* |
图8 Western blot检测各组细胞中ColⅠ、α-SMA、p-AKT、FGFR4蛋白表达 A:对照组;B:FGFR抑制剂组;C:TGF-β组;D:TGF-β+FGFR抑制剂组。
Fig.8 Western blot analysis of Col I, α-SMA, p-AKT, AKT and FGFR4 protein expression in each cell group
组别 | ColⅠ | α-SMA | FGFR4 | p-AKT/AKT |
---|---|---|---|---|
对照组 | 0.46±0.10 | 0.36±0.18 | 0.41±0.08 | 0.79±0.27 |
FGFR抑制剂组 | 0.44±0.13 | 0.41±0.16 | 0.27±0.20 | 0.60±0.28 |
TGF-β组 | 0.97±0.11ab | 1.22±0.08ab | 1.19±0.39ab | 2.90±0.94ab |
TGF-β+FGFR抑制剂组 | 0.58±0.25c | 0.72±0.08c | 0.43±0.16c | 0.34±0.20c |
F | 22.585** | 37.142** | 12.359** | 20.705** |
表6 4组细胞中α-SMA、ColⅠ、FGFR4、p-AKT的蛋白表达水平比较(n=4,$\bar{x}±s$)
Tab.6 Comparison of protein levels of α-SMA, Col I, FGFR4 and p-AKT between four groups of cells
组别 | ColⅠ | α-SMA | FGFR4 | p-AKT/AKT |
---|---|---|---|---|
对照组 | 0.46±0.10 | 0.36±0.18 | 0.41±0.08 | 0.79±0.27 |
FGFR抑制剂组 | 0.44±0.13 | 0.41±0.16 | 0.27±0.20 | 0.60±0.28 |
TGF-β组 | 0.97±0.11ab | 1.22±0.08ab | 1.19±0.39ab | 2.90±0.94ab |
TGF-β+FGFR抑制剂组 | 0.58±0.25c | 0.72±0.08c | 0.43±0.16c | 0.34±0.20c |
F | 22.585** | 37.142** | 12.359** | 20.705** |
[1] | 高翔, 梅长林. 慢性肾脏病早期筛查、诊断及防治指南(2022年版)[J]. 中华肾脏病杂志, 2022, 38(5):453-464. |
GAO X, MEI C L. Interpretation of guideline for early screening,diagnosis,prevention and treatment of chronic kidney disease(2022 edition)[J]. Chinese Journal of Practical Internal Medicine, 2022, 38(5):453-464. doi:10.19538/j.nk2022090108. | |
[2] | GREGG L P, HEDAYATI S S. Management of traditional cardiovascular risk factors in CKD:what are the data?[J]. Am J Kidney Dis, 2018, 72(5):728-744. doi:10.1053/j.ajkd.2017.12.007. |
[3] | BANSAL N, FAN D, HSU C Y, et al. Incident atrial fibrillation and risk of end-stage renal disease in adults with chronic kidney disease[J]. Circulation, 2013, 127(5):569-574. doi:10.1161/CIRCULATIONAHA.112.123992. |
[4] | LIPPI G, SANCHIS-GOMAR F, CERVELLIN G. Global epidemiology of atrial fibrillation:an increasing epidemic and public health challenge[J]. Int J Stroke, 2021, 16(2):217-221. doi:10.1177/1747493019897870. |
[5] | SOLIMAN E Z, PRINEAS R J, GO A S, et al. Chronic kidney disease and prevalent atrial fibrillation:the Chronic Renal Insufficiency Cohort (CRIC)[J]. Am Heart J, 2010, 159(6):1102-1107. doi:10.1016/j.ahj.2010.03.027. |
[6] | GUO Y, GAO J, YE P, et al. Comparison of atrial fibrillation in CKD and non-CKD populations:a cross-sectional analysis from the Kailuan study[J]. Int J Cardiol, 2019, 277:125-129. doi:10.1016/j.ijcard.2018.11.098. |
[7] | DING W Y, GUPTA D, WONG C F, et al. Pathophysiology of atrial fibrillation and chronic kidney disease[J]. Cardiovasc Res, 2021, 117(4):1046-1059. doi:10.1093/cvr/cvaa258. |
[8] | JANKOWSKI J, FLOEGE J, FLISER D, et al. Cardiovascular disease in chronic kidney disease:pathophysiological insights and therapeutic options[J]. Circulation, 2021, 143(11):1157-1172. doi:10.1161/CIRCULATIONAHA.120.050686. |
[9] | KOVESDY C P. Epidemiology of chronic kidney disease: an update 2022[J]. Kidney Int Suppl (2011), 2022, 12(1):7-11. doi:10.1016/j.kisu.2021.11.003. |
[10] | MATHEW J S, SACHS M C, KATZ R, et al. Fibroblast growth factor-23 and incident atrial fibrillation:the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS)[J]. Circulation, 2014, 130(4):298-307. doi:10.1161/CIRCULATIONAHA.113.005499. |
[11] | FAUL C, AMARAL A P, OSKOUEI B, et al. FGF23 induces left ventricular hypertrophy[J]. J Clin Invest, 2011, 121(11):4393-4408. doi:10.1172/JCI46122. |
[12] | DONG Q, LI S, WANG W, et al. FGF23 regulates atrial fibrosis in atrial fibrillation by mediating the STAT3 and SMAD3 pathways[J]. J Cell Physiol, 2019, 234(11):19502-19510. doi:10.1002/jcp.28548. |
[13] | YAO C, VELEVA T, SCOTT L J R, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation[J]. Circulation, 2018, 138(20):2227-2242. doi:10.1161/CIRCULATIONAHA.118.035202. |
[14] | HEALEY J S, BARANCHUK A, CRYSTAL E, et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers:a Meta-analysis[J]. J Am Coll Cardiol, 2005, 45(11):1832-1839. doi:10.1016/j.jacc.2004.11.070. |
[15] | LANDRAY M J, WHEELER D C, LIP G Y, et al. Inflammation,endothelial dysfunction,and platelet activation in patients with chronic kidney disease:the chronic renal impairment in Birmingham (CRIB) study[J]. Am J Kidney Dis, 2004, 43(2):244-253. doi:10.1053/j.ajkd.2003.10.037. |
[16] | SONG J, NAVARRO-GARCIA J A, WU J, et al. Chronic kidney disease promotes atrial fibrillation via inflammasome pathway activation[J]. J Clin Invest, 2023, 133(19):e167517. doi:10.1172/JCI167517. |
[17] | QIU H, JI C, WU H, et al. Chronic kidney disease-induced atrial structural remodeling and atrial fibrillation: more studies on the pathological mechanism are encouraged[J]. Naunyn Schmiedebergs Arch Pharmacol, 2018, 391(7):671-673. doi:10.1007/s00210-018-1494-4. |
[18] | AOKI K, TESHIMA Y, KONDO H, et al. Role of indoxyl sulfate as a predisposing factor for atrial fibrillation in renal dysfunction[J]. J Am Heart Assoc, 2015, 4(10):e002023. doi:10.1161/JAHA.115.002023. |
[19] | HEIJMAN J, VOIGT N, GHEZELBASH S, et al. Calcium handling abnormalities as a target for atrial fibrillation therapeutics:how close to clinical implementation?[J]. J Cardiovasc Pharmacol, 2015, 66(6):515-522. doi:10.1097/FJC.0000000000000253. |
[20] | CHEN W T, CHEN Y C, HSIEH M H, et al. The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis[J]. J Cardiovasc Electrophysiol, 2015, 26(2):203-210. doi:10.1111/jce.12554. |
[21] | KUGA K, KUSAKARI Y, UESUGI K, et al. Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1[J]. PLoS One, 2020, 15(4):e0231905. doi:10.1371/journal.pone.0231905. |
[22] | LEIFHEIT-NESTLER M, KIRCHHOFF F, NESPOR J, et al. Fibroblast growth factor 23 is induced by an activated renin-angiotensin-aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts[J]. Nephrol Dial Transplant, 2018, 33(10):1722-1734. doi:10.1093/ndt/gfy006. |
[23] | GRABNER A, AMARAL A P, SCHRAMM K, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy[J]. Cell Metab, 2015, 22(6):1020-1032. doi:10.1016/j.cmet.2015.09.002. |
[24] | HAN X, CAI C, XIAO Z, et al. FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble Klotho in mice[J]. J Mol Cell Cardiol, 2020, 138:66-74. doi:10.1016/j.yjmcc.2019.11.149. |
[25] | SINGH S, GRABNER A, YANUCIL C, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease[J]. Kidney Int, 2016, 90(5):985-996. doi:10.1016/j.kint.2016.05.019. |
[1] | 范慧慧, 任玉梅, 田新磊, 张凯, 李晓丽. 止咳平喘方对支气管哮喘小鼠气道炎症及TLR4/TRAF6/NF-κB通路的影响[J]. 天津医药, 2024, 52(9): 924-929. |
[2] | 贾维宁, 鲍亚玲, 雷慧, 殷晓宁. 夏枯草提取物对脓毒症小鼠炎症反应和腹腔巨噬细胞的影响[J]. 天津医药, 2024, 52(9): 930-935. |
[3] | 李莘, 李雪, 王谙. 温石棉对内皮细胞Wnt5a、p16和p21表达的影响[J]. 天津医药, 2024, 52(7): 679-682. |
[4] | 侯维玲, 乔云阳, 吴小芸, 施会敏, 曲高婷, 张爱青. 锌指蛋白281抑制高糖诱导的肾小管上皮细胞上皮间质转化和细胞外基质合成[J]. 天津医药, 2024, 52(7): 720-726. |
[5] | 徐琼芳, 钟斐, 李子帅. 淫羊藿苷调节SDF-1/CXCR4信号通路对多囊卵巢综合征大鼠卵巢颗粒细胞凋亡的影响[J]. 天津医药, 2024, 52(7): 727-732. |
[6] | 李勇, 苏亚坤, 张宏博, 李原, 李占虎, 闫小菊. 原发性高血压早期肾损害患者血清白脂素水平的临床意义[J]. 天津医药, 2024, 52(6): 609-613. |
[7] | 叶朝阳, 马建中, 李后俊, 魏鲲鹏. 急性胰腺炎患者外周血TLR4、IL-1β、NLR水平与疾病进展和预后的关系[J]. 天津医药, 2024, 52(6): 648-652. |
[8] | 赵斌, 赵志虎, 骆巍, 马剑雄, 马信龙. 大鼠周围神经损伤后外周血内皮祖细胞动员及相关因子含量变化[J]. 天津医药, 2024, 52(5): 459-462. |
[9] | 陈惠刚, 池小锋, 封娣, 米娅莉. 黄芪甲苷抑制Fas/FasL信号通路减轻创伤性脑损伤大鼠神经功能缺损和神经元凋亡[J]. 天津医药, 2024, 52(5): 469-474. |
[10] | 田静, 王子龙, 肖丹娜, 范向飞. 不同咀嚼压力对大鼠正畸移动牙压力侧牙槽骨改建的影响[J]. 天津医药, 2024, 52(4): 367-371. |
[11] | 满君, 高艳艳, 宋龙飞, 高福生. LncRNA FEZF1-AS1靶向调控miR-200c-3p对人肺成纤维细胞生物学行为的影响[J]. 天津医药, 2024, 52(3): 231-236. |
[12] | 田佳玉, 冯丹, 胡焓, 张书力, 童胜雄, 李少军. 槲皮素通过抑制MIP-1α/CCR1/CCR5信号通路减轻大鼠带状疱疹后神经痛的机制[J]. 天津医药, 2024, 52(3): 256-260. |
[13] | 张文超, 杨雪辉, 尹涛, 王睿健, 张盟盟. 自发性急性脑出血患者血浆sCD163/sTWEAK比值与预后的关系[J]. 天津医药, 2024, 52(3): 297-301. |
[14] | 徐丹, 刘夏, 钟殿胜. 佐利替尼一线治疗EGFR突变NSCLC伴中枢神经系统转移2例报告[J]. 天津医药, 2024, 52(3): 315-318. |
[15] | 易娜, 肖雯, 田源, 袁李礼. BMAL1减轻H2O2诱导的心肌细胞损伤机制研究[J]. 天津医药, 2024, 52(2): 119-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||