[1] |
MAKHARITA M Y. Prevention of post-herpetic neuralgia from dream to reality:a ten-step model[J]. Pain Physician, 2017, 20(2):E209-E220.
|
[2] |
MEACHAM K, SHEPHERD A, MOPHAPATRA D P, et al. Neuropathic pain:central vs. peripheral mechanisms[J]. Curr Pain Headache Rep, 2017, 21(6):28-38. doi:10.1007/s11916-017-0629-5.
|
[3] |
KENNEDY P, GERSHON A A. Clinical features of varicella-zoster virus infection[J]. Viruses, 2018, 10(11):609. doi:10.3390/v10110609.
|
[4] |
TAN X, MA L, YUAN J, et al. Intravenous infusion of lidocaine enhances the efficacy of conventional treatment of postherpetic neuralgia[J]. J Pain Res, 2019, 12:2537-2545. doi:10.2147/JPR.S213128.
|
[5] |
CHEN J, LI G, SUN C, et al. Chemistry,pharmacokinetics,pharmacological activities,and toxicity of Quercitrin[J]. Phytother Res, 2022, 36(4):1545-1575. doi:10.1002/ptr.7397.
|
[6] |
CARULLO G, CAPPELLO A R, FRATTARUOLO L, et al. Quercetin and derivatives:useful tools in inflammation and pain management[J]. Future Med Chem, 2017, 9(1):79-93. doi:10.4155/fmc-2016-0186.
|
[7] |
YE G, LIN C, ZHANG Y, et al. Quercetin alleviates neuropathic pain in the rat CCI model by mediating AMPK/MAPK pathway[J]. J Pain Res, 2021, 14:1289-1301. doi:10.2147/JPR.S298727.
|
[8] |
WU X, JI K, WANG H, et al. MIP-1α induces inflammatory responses by upregulating chemokine receptor 1/chemokine receptor 5 and activating c-Jun N-terminal kinase and mitogen-activated protein kinase signaling pathways in acute pancreatitis[J]. J Cell Biochem, 2019, 120(3):2994-3000. doi:10.1002/jcb.27049.
|
[9] |
LI M, JIANG H, GU K, et al. Lidocaine alleviates neuropathic pain and neuroinflammation by inhibiting HMGB1 expression to mediate MIP-1α/CCR1 pathway[J]. J Neuroimmune Pharmacol, 2021, 16(2):318-333. doi: 10.1007/s11481-020-09913-y.
|
[10] |
常成, 宋燕. 甘草酸铵对带状疱疹后遗神经痛大鼠GLP-1R/IL-10/β-内啡肽通路及脊髓背角小胶质细胞活化的影响[J]. 免疫学杂志, 2022, 38(1):81-87.
|
|
CHANG C, SONG Y. Effect of ammonium glycyrrhizinate on GLP-1R/IL-10/β-endorphin pathway and microglia activation in spinal dorsal dorn of rats posherpetic neuralgla[J]. Immunal J, 2022, 38(1):81-87. doi:10.13431/j.cnki.immunol.j.20220012.
|
[11] |
JI C, XU Y, HAN F, et al. Quercetin alleviates thermal and cold hyperalgesia in a rat neuropathic pain model by inhibiting Toll-like receptor signaling[J]. Biomed Pharmacother, 2017, 94:652-658. doi:10.1016/j.biopha.2017.07.145.
|
[12] |
FERRARI L F, ARALDI D, LEVINE J D. Regulation of expression of hyperalgesic priming by estrogen receptor α in the rat[J]. J Pain, 2017, 18(5):574-582. doi:10.1016/j.jpain.2016.12.017.
|
[13] |
WEI X, WANG L, HUA J, et al. Inhibiting BDNF/TrkB.T1 receptor improves resiniferatoxin-induced postherpetic neuralgia through decreasing ASIC3 signaling in dorsal root ganglia[J]. J Neuroinflammation, 2021, 18(1):96. doi:10.1186/s12974-021-02148-5.
|
[14] |
YANG R, LI L, YUAN H, et al. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X4 receptor in dorsal root ganglia[J]. J Cell Physiol, 2019, 234(3):2756-2764. doi:10.1002/jcp.27091.
|
[15] |
WANG R, QIU Z, WANG G, et al. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice[J]. Eur J Pharmacol, 2020, 882:173266. doi:10.1016/j.ejphar.2020.173266.
|
[16] |
ESPINOSA-JUÁREZ J V, JARAMILLO-MORALES O A, DÉCIGA-CAMPOS M, et al. Sigma-1 receptor antagonist (BD-1063) potentiates the antinociceptive effect of quercetin in neuropathic pain induced by chronic constriction injury[J]. Drug Dev Res, 2021, 82(2):267-277. doi:10.1002/ddr.21750.
|
[17] |
CHEN Z, DOYLE T M, LUONGO L, et al. Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain[J]. Proc Natl Acad Sci U S A, 2019, 116(21):10557-10562. doi:10.1073/pnas.1820466116.
|
[18] |
ECHEVERRY S, SHI X Q, YANG M, et al. Spinal microglia are required for long-term maintenance of neuropathic pain[J]. Pain, 2017, 158(9):1792-1801. doi:10.1097/j.pain.0000000000000982.
|
[19] |
WANG M, PAN W, XU Y, et al. Microglia-mediated neuroinflammation:a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15:3083-3094. doi:10.2147/JIR.S350109.
|
[20] |
DAVIS B M, SALINAS-NAVARRO M, CORDEIRO M F, et al. Characterizing microglia activation:a spatial statistics approach to maximize information extraction[J]. Sci Rep, 2017, 7(1):1576. doi: 10.1038/s41598-017-01747-8.
|
[21] |
WANG J, TU J, CAO B, et al. Astrocytic l-lactate signaling facilitates amygdala-anterior cingulate cortex synchrony and decision making in rats[J]. Cell Rep, 2017, 21(9):2407-2418. doi:10.1016/j.celrep.2017.11.012.
|
[22] |
YANG Q Q, ZHOU J W. Neuroinflammation in the central nervous system: symphony of glial cells[J]. Glia, 2019, 67(6):1017-1035. doi: 10.1002/glia.23571.
|
[23] |
PELISCH N, ROSAS ALMANZA J, STEHLIK K E, et al. CCL3 contributes to secondary damage after spinal cord injury[J]. J Neuroinflammation, 2020, 17(1):362. doi:10.1186/s12974-020-02037-3.
|