天津医药 ›› 2025, Vol. 53 ›› Issue (5): 462-467.doi: 10.11958/20241498
收稿日期:
2024-10-09
修回日期:
2025-02-26
出版日期:
2025-05-15
发布日期:
2025-05-28
作者简介:
李晨(1989),男,主治医师,主要从事膀胱癌的相关研究。E-mail:基金资助:
LI Chen(), LI Zhan’en, SU Hongwei, HOU Caiyun, DONG Shaowen
Received:
2024-10-09
Revised:
2025-02-26
Published:
2025-05-15
Online:
2025-05-28
李晨, 李占恩, 苏宏伟, 侯彩云, 董少文. KRT17调节Wnt/β-catenin信号通路对膀胱癌细胞增殖、凋亡及上皮间质转化的影响[J]. 天津医药, 2025, 53(5): 462-467.
LI Chen, LI Zhan’en, SU Hongwei, HOU Caiyun, DONG Shaowen. Effects of KRT17 regulating Wnt/β-catenin signaling pathway on proliferation, apoptosis and epithelial mesenchymal transformation of bladder cancer cells[J]. Tianjin Medical Journal, 2025, 53(5): 462-467.
摘要:
目的 探讨敲低角蛋白17(KRT17)通过调节Wnt/β-连环蛋白(β-catenin)信号通路对膀胱癌细胞增殖、凋亡及上皮间质转化(EMT)的影响。方法 qRT-PCR及Western blot检测膀胱癌组织、癌旁组织及膀胱癌细胞系(5637、T24、UM-UC-3)及人永生化尿路上皮细胞系SV-HUC-1细胞中KRT17 mRNA及蛋白表达。免疫组化染色检测组织中KRT17表达。通过转染NC siRNA、KRT17 siRNA至细胞,标记为NC siRNA组、KRT17 siRNA组;以20 mmol/L LiCl处理T24细胞,标记为LiCl组;以20 mmol/L LiCl处理转染KRT17 siRNA的T24细胞,标记为KRT17 siRNA+LiCl组,不转染的细胞为空白组。CCK-8、克隆形成实验、流式细胞术检测细胞增殖及凋亡;qRT-PCR检测KRT17 mRNA表达;Western blot检测KRT17、β-catenin、细胞周期蛋白D1(Cyclin D1)、EMT相关蛋白Vimentin、E-cadherin、Snail蛋白表达。结果 KRT17 mRNA及蛋白表达在膀胱癌组织及细胞中明显升高(P<0.05);KRT17 siRNA组KRT17 mRNA及蛋白表达、细胞增殖率及菌落数、细胞侵袭数、β-catenin、Cyclin D1、Vimentin、Snail表达较NC siRNA组和空白组降低,凋亡率、E-cadherin表达增加(P<0.05);LiCl逆转了敲低KRT17对膀胱癌恶性行为的抑制。结论 敲低KRT17通过抑制Wnt/β-catenin信号通路抑制膀胱癌细胞增殖及EMT,促进其凋亡。
中图分类号:
组别 | KRT17 mRNA | KRT17/β-actin |
---|---|---|
癌旁组织 | 0.94±0.10 | 0.42±0.05 |
膀胱癌组织 | 1.64±0.17 | 0.87±0.09 |
t | 31.744** | 39.094** |
表1 膀胱癌组织和癌旁组织中KRT17 mRNA及蛋白表达水平比较 (n=80,$\bar{x}±s$)
Tab.1 Comparison of KRT17 mRNA and protein expression levels between bladder cancer tissue and adjacent tissue
组别 | KRT17 mRNA | KRT17/β-actin |
---|---|---|
癌旁组织 | 0.94±0.10 | 0.42±0.05 |
膀胱癌组织 | 1.64±0.17 | 0.87±0.09 |
t | 31.744** | 39.094** |
图3 Western blot检测膀胱癌细胞中KRT17蛋白表达 A:SV-HUC-1细胞;B:5637细胞;C:UM-UC-3细胞;D:T24细胞。
Fig. 3 Western blot analysis of KRT17 protein expression in bladder cancer cells
细胞 | KRT17 mRNA | KRT17/β-actin |
---|---|---|
SV-HUC-1 | 1.02±0.11 | 0.37±0.04 |
5637 | 1.57±0.16a | 0.54±0.06a |
UM-UC-3 | 1.61±0.17a | 0.51±0.07a |
T24 | 2.02±0.21abc | 0.84±0.09abc |
F | 36.545** | 51.560** |
表2 膀胱癌细胞中KRT17 mRNA及蛋白表达水平比较 (n=6,$\bar{x}±s$)
Tab.2 Comparison of KRT17 mRNA and protein expression levels between bladder cancer cells
细胞 | KRT17 mRNA | KRT17/β-actin |
---|---|---|
SV-HUC-1 | 1.02±0.11 | 0.37±0.04 |
5637 | 1.57±0.16a | 0.54±0.06a |
UM-UC-3 | 1.61±0.17a | 0.51±0.07a |
T24 | 2.02±0.21abc | 0.84±0.09abc |
F | 36.545** | 51.560** |
图4 Western blot检测各组T24细胞中KRT17蛋白表达 A:空白组;B:NC siRNA组;C:KRT17 siRNA组;D:LiCl组; E:KRT17 siRNA+LiCl组。
Fig. 4 Western blot analysis of KRT17 protein expression in T24 cells in each group
组别 | KRT17 mRNA | KRT17/β-actin |
---|---|---|
空白组 | 1.06±0.12 | 0.78±0.08 |
NC siRNA组 | 1.07±0.11 | 0.72±0.08 |
KRT17 siRNA组 | 0.47±0.05ab | 0.37±0.04ab |
LiCl组 | 1.98±0.21 | 1.45±0.15 |
KRT17 siRNA+LiCl组 | 1.12±0.12cd | 0.69±0.07cd |
F | 99.960** | 112.371** |
表3 各组T24细胞中KRT17 mRNA及蛋白表达水平比较 (n=6,$\bar{x}±s$)
Tab.3 Comparison of KRT17 mRNA and protein expression between five groups of T24 cells
组别 | KRT17 mRNA | KRT17/β-actin |
---|---|---|
空白组 | 1.06±0.12 | 0.78±0.08 |
NC siRNA组 | 1.07±0.11 | 0.72±0.08 |
KRT17 siRNA组 | 0.47±0.05ab | 0.37±0.04ab |
LiCl组 | 1.98±0.21 | 1.45±0.15 |
KRT17 siRNA+LiCl组 | 1.12±0.12cd | 0.69±0.07cd |
F | 99.960** | 112.371** |
组别 | 增殖率/% | 菌落数/个 |
---|---|---|
空白组 | 88.64±8.91 | 201.42±20.27 |
NC siRNA组 | 89.04±8.97 | 211.50±21.29 |
KRT17 siRNA组 | 48.62±4.93ab | 124.62±12.66ab |
LiCl组 | 128.64±12.94 | 308.51±31.02 |
KRT17 siRNA+LiCl组 | 87.24±8.81cd | 198.54±19.97cd |
F | 55.977** | 54.063** |
表4 各组T24细胞中增殖及菌落数比较 (n=6,$\bar{x}±s$)
Tab.4 Comparison of proliferation and colony number of T24 cells between the five groups
组别 | 增殖率/% | 菌落数/个 |
---|---|---|
空白组 | 88.64±8.91 | 201.42±20.27 |
NC siRNA组 | 89.04±8.97 | 211.50±21.29 |
KRT17 siRNA组 | 48.62±4.93ab | 124.62±12.66ab |
LiCl组 | 128.64±12.94 | 308.51±31.02 |
KRT17 siRNA+LiCl组 | 87.24±8.81cd | 198.54±19.97cd |
F | 55.977** | 54.063** |
组别 | 凋亡率/% | 侵袭数/(个/视野) |
---|---|---|
空白组 | 9.73±0.10 | 134.57±13.61 |
NC siRNA组 | 10.04±1.02 | 133.94±13.52 |
KRT17 siRNA组 | 28.43±2.91ab | 82.02±8.33ab |
LiCl组 | 5.24±0.55 | 216.24±21.72 |
KRT17 siRNA+LiCl组 | 11.18±1.21cd | 134.05±13.55cd |
F | 213.361** | 63.661** |
表5 各组T24细胞凋亡率和细胞侵袭数比较 (n=6,$\bar{x}±s$)
Tab.5 Comparison of apoptosis rate and cell invasion number of T24 cells between five groups
组别 | 凋亡率/% | 侵袭数/(个/视野) |
---|---|---|
空白组 | 9.73±0.10 | 134.57±13.61 |
NC siRNA组 | 10.04±1.02 | 133.94±13.52 |
KRT17 siRNA组 | 28.43±2.91ab | 82.02±8.33ab |
LiCl组 | 5.24±0.55 | 216.24±21.72 |
KRT17 siRNA+LiCl组 | 11.18±1.21cd | 134.05±13.55cd |
F | 213.361** | 63.661** |
图8 Western blot检测各组T24细胞中β-catenin、Cyclin D1、Vimentin、E-cadherin、Snail蛋白表达 A:空白组;B:NC siRNA组;C:KRT17 siRNA组;D:LiCl组; E:KRT17 siRNA+LiCl组。
Fig.8 The protein expressions of β-catenin, Cyclin D1, Vimentin, E-cadherin and Snail in T24 cells of each group detected by Western blot assay
组别 | β-catenin/β-actin | Cyclin D1/β-actin | ||||
---|---|---|---|---|---|---|
空白组 | 0.67±0.07 | 0.59±0.06 | ||||
NC siRNA组 | 0.63±0.07 | 0.55±0.06 | ||||
KRT17 siRNA组 | 0.28±0.03ab | 0.24±0.03ab | ||||
LiCl组 | 0.94±0.10 | 0.84±0.09 | ||||
KRT17 siRNA+LiCl组 | 0.71±0.08cd | 0.52±0.06cd | ||||
F | 62.357** | 69.197** | ||||
组别 | Vimentin/ β-actin | E-cadherin/ β-actin | Snail/ β-actin | |||
空白组 | 0.71±0.08 | 0.57±0.06 | 0.89±0.09 | |||
NC siRNA组 | 0.79±0.08 | 0.52±0.06 | 0.85±0.09 | |||
KRT17 siRNA组 | 0.37±0.04ab | 0.78±0.08ab | 0.58±0.06ab | |||
LiCl组 | 1.44±0.15 | 0.24±0.03 | 1.47±0.15 | |||
KRT17 siRNA+LiCl组 | 0.75±0.08cd | 0.49±0.05cd | 0.78±0.08cd | |||
F | 104.702** | 65.912** | 68.273** |
表6 各组T24细胞中β-catenin、Cyclin D1、Vimentin、E-cadherin、Snail表达比较 (n=6,$\bar{x}±s$)
Tab.6 The expression of β-catenin, Cyclin D1, Vimentin, E-cadherin and Snail in T24 cells of each group
组别 | β-catenin/β-actin | Cyclin D1/β-actin | ||||
---|---|---|---|---|---|---|
空白组 | 0.67±0.07 | 0.59±0.06 | ||||
NC siRNA组 | 0.63±0.07 | 0.55±0.06 | ||||
KRT17 siRNA组 | 0.28±0.03ab | 0.24±0.03ab | ||||
LiCl组 | 0.94±0.10 | 0.84±0.09 | ||||
KRT17 siRNA+LiCl组 | 0.71±0.08cd | 0.52±0.06cd | ||||
F | 62.357** | 69.197** | ||||
组别 | Vimentin/ β-actin | E-cadherin/ β-actin | Snail/ β-actin | |||
空白组 | 0.71±0.08 | 0.57±0.06 | 0.89±0.09 | |||
NC siRNA组 | 0.79±0.08 | 0.52±0.06 | 0.85±0.09 | |||
KRT17 siRNA组 | 0.37±0.04ab | 0.78±0.08ab | 0.58±0.06ab | |||
LiCl组 | 1.44±0.15 | 0.24±0.03 | 1.47±0.15 | |||
KRT17 siRNA+LiCl组 | 0.75±0.08cd | 0.49±0.05cd | 0.78±0.08cd | |||
F | 104.702** | 65.912** | 68.273** |
[1] | CHEN W, ZHAO S, YU W, et al. SC66 inhibits the proliferation and induces apoptosis of human bladder cancer cells by targeting the AKT/β-catenin pathway[J]. J Cell Mol Med, 2021, 25(22):10684-10697. doi:10.1111/jcmm.17005. |
[2] | 吴潇芸, 吴林秀, 张丽娣, 等. LINC00839靶向调控miR-124-3p对膀胱癌细胞生物学行为的影响[J]. 天津医药, 2023, 51(5):464-468. |
WU X Y, WU L X, ZHANG L D, et al. Effect of LINC00839 on biological behavior of bladder cancer cells by targeting miR-124-3p[J]. Tianjin Med J, 2019, 51(5):464-468. doi:10.11958/20221488. | |
[3] | SU Y, FENG W, SHI J, et al. circRIP2 accelerates bladder cancer progression via miR-1305/Tgf-β2/smad3 pathway[J]. Mol Cancer, 2020, 19(1):23-37. doi:10.1186/s12943-020-01284-5. |
[4] | 洪翔, 顾晓露. 根治性全膀胱切除加回肠代膀胱术不同手术方式的疗效比较[J]. 中国基层医药, 2022, 29(1):96-100. |
HONG X, GU X L. Efficacy of different surgical methods for radical cystectomy plus Bricker's ileal conduit urinary diversion[J]. Chinese Journal of Primary Medicine and Pharmacy, 2022, 29(1):96-100. doi:10.3760/cma.j.issn.1008-6706.2022.01.020. | |
[5] | 王雪梅, 程玉, 齐洁敏. PRMT7通过调控Notch信号转导通路抑制膀胱癌细胞增殖和迁移[J]. 中国癌症杂志, 2023, 33(5):437-444. |
WANG X M, CHENG Y, QI J M. PRMT7 inhibits the proliferation and migration of bladder cancer cells by regulating Notch signaling pathway[J]. Chin J Cancer, 2023, 33(5):437-444. doi:10.19401/j.cnki.1007-3639. | |
[6] | LI C, TENG Y, WU J, et al. A pan-cancer analysis of the oncogenic role of Keratin 17 (KRT17) in human tumors[J]. Transl Cancer Res, 2021, 10(10):4489-4501. doi:10.21037/tcr-21-2118. |
[7] | LI C, SU H, RUAN C, et al. Keratin 17 knockdown suppressed malignancy and cisplatin tolerance of bladder cancer cells,as well as the activation of AKT and ERK pathway[J]. Folia Histochem Cytobiol, 2021, 59(1):40-48. doi:10.5603/FHC.a2021.0005. |
[8] | WANG X, LUO L, XU J, et al. Echinatin inhibits tumor growth and synergizes with chemotherapeutic agents against human bladder cancer cells by activating p38 and suppressing Wnt/β-catenin pathways[J]. Genes Dis, 2023, 11(2):1050-1065. doi:10.1016/j.gendis.2023.03.031. |
[9] | ZHANG J, LI Q, SUN Q, et al. Epigenetic modifications inhibit the expression of MARVELD1 and in turn tumorigenesis by regulating the Wnt/β-catenin pathway in pan-cancer[J]. J Cancer, 2022, 13(1):225-242. doi:10.7150/jca.63608. |
[10] | 左明顺, 董志诚, 左玉, 等. 蒲公英抗膀胱癌潜在机制的研究进[J]. 中国实验方剂学杂志, 2024, 30(7):290-298. |
ZUO M S, DONG Z C, ZUO Y, et al. Potential mechanism of Taraxaci Herba against bladder cancer:a review[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2024, 30(7):290-298. doi:10.13422/j.cnki.syfjx.20231124. | |
[11] | ZHOU Q, YU J, ZHENG Q, et al. Kinesin family member 3A stimulates cell proliferation,migration,and invasion of bladder cancer cells in vitro and in vivo[J]. FEBS Open Bio, 2021, 11(5):1487-1496. doi:10.1002/2211-5463.12768. |
[12] | ZHANG H, ZHANG Y, FENG Z, et al. Analysis of the expression and role of Keratin 17 in human tumors[J]. Front Genet, 2022, 13(1):801698-801712. doi:10.3389/fgene.2022.801698. |
[13] | 张晓峰, 宋芳, 朱林忠. 局部晚期宫颈癌患者血清KRT17蛋白表达水平对动脉介入新辅助化疗效果的影响[J]. 癌变·畸变·突变, 2024, 36(2):112-117. |
ZHANG X F, SONG F, ZHU L Z. Influence of serum KRT17 protein expression level on the effect of neoadjuvant chemotherapy after arterial intervention in patients with local advanced cervical cancer[J]. Canceration Aberration and Mutation, 2024, 36(2):112-117. doi:10.3969/j.issn.1004-616x.2024.02.00. | |
[14] | DAYATI P, SHAKHSSALIM N, ALLAMEH A. Over-expression of KRT17 and MDK genes at mRNA levels in urine-exfoliated cells is associated with early non-invasive diagnosis of non-muscle-invasive bladder cancer[J]. Clin Biochem, 2024, 26(1):110808-110820. doi:10.1016/j.clinbiochem.2024.110808. |
[15] | LIU B, DAN W, WEI Y, et al. β-asarone inhibits the migration,invasion,and EMT of bladder cancer through activating ER stress[J]. Cancer Med, 2023, 12(12):13610-13622. doi:10.1002/cam4.6059. |
[16] | 徐兵, 李勇, 刘明, 等. 沉默TRIM31基因表达通过调控Wnt/β‑catenin信号通路抑制膀胱癌细胞的迁移与侵袭[J]. 中国免疫学杂志, 2021, 37(15):1836-1840. |
XU B, LI Y, LIU M, et al. Silencing TRIM31 gene expression inhibits the migration and invasion of bladder cancer cells by regulating Wnt/β-catenin signaling pathway[J]. Chin J Immun, 2021, 37(15):1836-1840. doi:10.3969/j.issn.1000-484X.2021.15.009. | |
[17] | BABU S, KIM N W, WU M, et al. Keratin 17 is a novel cytologic biomarker for urothelial carcinoma diagnosis[J]. Am J Clin Pathol, 2021, 156(5):926-933. doi:10.1093/ajcp/aqab050. |
[18] | KOTOLLOSHI R, GAJDA M, GRIMM M O, et al. Wnt/β-Catenin signalling and its cofactor BCL9L have an oncogenic effect in bladder cancer cells[J]. Int J Mol Sci, 2022, 23(10):5319-5336. doi:10.3390/ijms23105319. |
[19] | HUANG Z, GAO H, QING L, et al. A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway[J]. PeerJ, 2022, 10(1):e13220. doi:10.7717/peerj.13220. |
[20] | WU L, DING W, WANG X, et al. Interference KRT17 reverses doxorubicin resistance in triple-negative breast cancer cells by Wnt/β-catenin signaling pathway[J]. Genes Genomics, 2023, 45(10):1329-1338. doi:10.1007/s13258-023-01437-y. |
[21] | LI Y, KONG Y, AN M, et al. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β‑catenin pathway[J]. J Exp Clin Cancer Res, 2023, 42(1):191-201. doi:10.1186/s13046-023-02757-3. |
[22] | BAO P, LI P, ZHOU X, et al. SMAR1 inhibits proliferation,EMT and Warburg effect of bladder cancer cells by suppressing the activity of the Wnt/β-catenin signaling pathway[J]. Cell Cycle, 2023, 22(2):229-241. doi:10.1080/15384101.2022.2112006. |
[1] | 余朝霞, 马贲, 邱林, 高倩, 尼娜. 基于网络药理学和实验验证探究鲍式层孔菌多酚的抗头颈鳞癌机制[J]. 天津医药, 2025, 53(5): 456-461. |
[2] | 苏红见, 张春艳, 张卫东, 韩利, 乔亚红. 鸢尾素调控EBF3/ALOX15通路影响肺腺癌细胞增殖和迁移[J]. 天津医药, 2025, 53(4): 337-342. |
[3] | 祁卫华, 黄广磊, 张媛媛, 班宏英, 毛诏旭. 连翘脂素调节cAMP/EPAC1/RAP1信号通路对肺癌细胞恶性进展的影响[J]. 天津医药, 2025, 53(4): 343-348. |
[4] | 闫玲新, 李森, 郭改莉, 孟婉秋, 徐超. 异牡荆素通过miR-339-5p/HSPA8轴调节胰腺癌细胞的生物学行为[J]. 天津医药, 2025, 53(3): 230-235. |
[5] | 马莉莉, 李子沐, 王亮, 许彭, 李秀梅. 间充质干细胞外泌体对食管癌ECA109细胞生物学行为的影响[J]. 天津医药, 2025, 53(2): 113-117. |
[6] | 王健, 程宪永, 于宁. miR-1247-5p/Smad2轴对胃癌细胞迁移、侵袭和上皮间质转化的影响[J]. 天津医药, 2025, 53(2): 118-123. |
[7] | 吴宾, 杨自更, 张婧, 李书红, 余凤, 王嘉玮, 李彩玲. 柚皮素对低氧性肺动脉高压大鼠右心室重塑的影响[J]. 天津医药, 2025, 53(2): 129-134. |
[8] | 翟书鹏, 贾航, 苗统, 魏康康, 周国平. 帕金森病患者血清Trx1、PDCD4、AQP4水平与认知功能的关系[J]. 天津医药, 2025, 53(2): 146-150. |
[9] | 杨健, 李敏, 李越洋, 田晨. T-ALL来源的骨髓基质细胞通过FGF2-FGFR2通路促进T-ALL增殖[J]. 天津医药, 2025, 53(1): 29-34. |
[10] | 高蕊, 周官恩, 洪雁, 颜艳. 蛋白酪氨酸磷酸酶受体R型对胶质瘤细胞恶性生物学行为的影响[J]. 天津医药, 2025, 53(1): 9-13. |
[11] | 钟玉梅, 周海燕, 张敏. ASIC1a介导类风湿关节炎软骨细胞损伤机制的研究进展[J]. 天津医药, 2024, 52(9): 1004-1008. |
[12] | 张晋玮, 王燕, 王通. miR-107对口腔鳞癌细胞系CAL27增殖、侵袭及迁移的影响[J]. 天津医药, 2024, 52(9): 897-899. |
[13] | 梁大敏, 杨正久, 张子萍, 钱静, 毛朝坤. 山萘酚逆转肝癌耐药细胞Bel-7402/5-Fu的作用机制研究[J]. 天津医药, 2024, 52(9): 900-906. |
[14] | 方杰, 黄芮, 郑红慧, 贾倩倩, 鲍静. miR-9-5p靶向TIMP2诱导多发性骨髓瘤细胞自噬和凋亡的机制[J]. 天津医药, 2024, 52(8): 785-790. |
[15] | 侯维玲, 乔云阳, 吴小芸, 施会敏, 曲高婷, 张爱青. 锌指蛋白281抑制高糖诱导的肾小管上皮细胞上皮间质转化和细胞外基质合成[J]. 天津医药, 2024, 52(7): 720-726. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||