• 细胞与分子生物学 • 上一篇    下一篇

通过乳腺上皮差异表达基因对乳腺癌的早期诊断分析

魏熙胤,臧凤林   

  1. 天津医科大学肿瘤医院
  • 收稿日期:2013-08-12 修回日期:2014-02-14 出版日期:2014-05-15 发布日期:2014-05-15
  • 通讯作者: 臧凤林

The Analysis of Abnormal Gene Expression in Mammary Epithelium for Early Diagnosis of Breast Cancer

Yin Xi Wei,Feng-Lin ZANG   

  • Received:2013-08-12 Revised:2014-02-14 Published:2014-05-15 Online:2014-05-15
  • Contact: Feng-Lin ZANG

摘要: 目的 组织学上正常的乳腺上皮组织中存在着一些隐蔽性的异常。对这些异常基因的研究对于乳腺癌的发生和早期诊断有着非常重要的作用。方法 基因芯片技术可以在同一时间 点上检测大量基因的表达水平,从而发现异常表达的基因。本文应用生物信息学的手段以差异表达基因建立乳腺癌早期诊断模型,使用信号通路富集的方法筛选差异 表达基因。结果 其中将KEGG和BIOCARTA通路中富集的基因结合在一起的预测性能最好,随机建立的三个预测模型的差异表达基因个数分别从22缩减到7 个,14个缩减到3个,18个缩减到4个,但是预测精度与使用全部差异表达基因的预测精度保持一致,准确度的平均值均为96.3%。结论 通过这种方法可 以在预测精度不变的情况下简化预测模型,使得该模型更易于应用到临床诊断上,为乳腺癌早期诊断和预防提供了方向。

关键词: 乳腺癌, 基因芯片, 通路, 生物信息学, 预测

Abstract: Abstract: Purpose: Abnormalities always exist in breast epithelial tissues of normal histologic feature; thus, investigation of these differential expressed genes plays an important role in understanding of breast cancer development and in early diagnosis of this disease. Methods: Microarray technology provides a powerful tool to detect a large number of genes at the same point in time, which can be used to identify abnormal gene expression. In this study, we used bioinformatics tools to establish a model for early diagnosis of breast cancer, and screen differentially expressed genes by using signal pathway enrichment analysis. Results: The best prediction model was derived from the combination of differential genes enriched from KEGG and BioCarta database; the number of differential expressed genes in three random created prediction models was reduced from 22 to 7, 14 to 3 and 18 to 4, however, the prediction accuracy was consistently with the model established from all of the differentially expressed genes, and the average accuracy of all models is 96.3%. Conclusion: By this means, the prediction model can be simplified with the prediction accuracy unchanged, and thus facilitate the model apply to early diagnosis and prevention of breast cancer.

Key words: breast cancer, microarray, pathway, bioinformatics, prediction