[1] |
KARLSTAEDT A, MOSLEHI J, DE BOER R A. Cardio-onco-metabolism:metabolic remodelling in cardiovascular disease and cancer[J]. Nat Rev Cardiol, 2022, 19(6):414-425. doi:10.1038/s41569-022-00698-6.
|
[2] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics,2022[J]. CA Cancer J Clin, 2022, 72(1):7-33. doi:10.3322/caac.21708.
|
[3] |
WANG K X, YE C, YANG X, et al. New insights into the understanding of mechanisms of radiation-induced heart disease[J]. Curr Treat Options Oncol, 2023, 24(1):12-29. doi:10.1007/s11864-022-01041-4.
|
[4] |
YANG E H, MARMAGKIOLIS K, BALANESCU D V, et al. Radiation-induced vascular disease-a state-of-the-art review[J]. Front Cardiovasc Med, 2021, 8:652761. doi:10.3389/fcvm.2021.652761.
|
[5] |
SÁRKÖZY M, VARGA Z, GÁSPÁR R, et al. Pathomechanisms and therapeutic opportunities in radiation-induced heart disease:from bench to bedside[J]. Clin Res Cardiol, 2021, 110(4):507-531. doi:10.1007/s00392-021-01809-y.
|
[6] |
BELZILE-DUGAS E, EISENBERG M J. Radiation-induced cardiovascular disease:review of an underrecognized pathology[J]. J Am Heart Assoc, 2021, 10(18):e021686. doi:10.1161/JAHA.121.021686.
|
[7] |
杨华菊, 张益, 彭鸥, 等. 放射性心脏损伤:现状与挑战[J]. 四川大学学报(医学版), 2022, 53(6):1127-1134.
|
|
YANG H J, ZHANG Y, PENG O, et al. Radiation-induced heart disease:current status and challenges[J]. J Sichuan Univ(Med Sci), 2022, 53(6):1127-1134. doi:10.12182/20221160302.
|
[8] |
DREYFUSS A D, VELALOPOULOU A, AVGOUSTI H, et al. Preclinical models of radiation-induced cardiac toxicity:potential mechanisms and biomarkers[J]. Front Oncol, 2022, 12:920867. doi:10.3389/fonc.2022.920867.
|
[9] |
CHENG W, CUI C, LIU G, et al. NF-κB,a potential therapeutic target in cardiovascular diseases[J]. Cardiovasc Drugs Ther, 2023, 37(3):571-584. doi:10.1007/s10557-022-07362-8.
|
[10] |
ZHANG X, CHEN X, WANG A, et al. Yiqi jiedu decoction attenuates radiation injury of spermatogenic cells via suppressing IκBα/NF-κB pathway-induced excessive autophagy and apoptosis[J]. J Ethnopharmacol, 2024, 318(Pt A):116903. doi:10.1016/j.jep.2023.116903.
|
[11] |
VERMA S, DUTTA A, DAHIYA A, et al. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling[J]. Phytomedicine, 2022, 99:154004. doi:10.1016/j.phymed.2022.154004.
|
[12] |
何平, 赵燕, 王海东, 等. 氟比洛芬酯对放射性心脏损伤模型大鼠NF-κB/TGF-β1信号通路的影响[J]. 中国免疫学杂志, 2023, 39(5):945-950.
|
|
HE P, ZHAO Y, WANG H D, et al. Effects of flurbiprofen axetil on NF-κB/TGF-β1 signaling pathway in rats with radiation-induced heart disease[J]. Chinese Journal of Immunology, 2023, 39(5):945-950. doi:10.3969/j.issn.1000-484X.2023.05.009.
|
[13] |
WU Y, LIU L, LV S, et al. Pyrrolidine dithiocarbamate might mitigate radiation-induced heart damage at an early stage in rats[J]. Front Pharmacol, 2022, 13:832045. doi: 10.3389/fphar.2022.832045.
|
[14] |
LI L, NIE X, ZHANG P, et al. Dexrazoxane ameliorates radiation-induced heart disease in a rat model[J]. Aging (Albany NY), 2021, 13(3):3699-3711. doi:10.18632/aging.202332.
|
[15] |
WANG J, HU K, CAI X, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022, 12(1):18-32. doi:10.1016/j.apsb.2021.07.023.
|
[16] |
PENG Y, WANG Y, ZHOU C, et al. PI3K/Akt/mTOR pathway and its role in cancer therapeutics:are we making headway?[J]. Front Oncol, 2022, 12:819128. doi:10.3389/fonc.2022.819128.
|
[17] |
KOVÁCS M G, KOVÁCS Z Z A, VARGA Z, et al. Investigation of the antihypertrophic and antifibrotic effects of losartan in a rat model of radiation-induced heart disease[J]. Int J Mol Sci, 2021, 22(23):12963. doi:10.3390/ijms222312963.
|
[18] |
常娟. 当归红芪提取物对X线诱导乳鼠心肌成纤维细胞纤维化的相关机制及干预作用研究[D]. 兰州: 甘肃中医药大学, 2022.
|
|
CHANG J. Study on the related mechanism and intervention effect of extract of Radix Angelica Sinensis and Radix Hedysari on fibrosis in myocardial fibroblast of neonatal rats after X-ray radiation[D]. Lanzhou: Gansu University of Chinese Medicine, 2022. doi:10.27026/d.cnki.ggszc.2022.000001.
|
[19] |
GUO Z Y, TANG Y, CHENG Y C. Exosomes as targeted delivery drug system:advances in exosome loading,surface functionalization and potential for clinical application[J]. Curr Drug Deliv, 2024, 21(4):473-487. doi:10.2174/1567201819666220613150814.
|
[20] |
CUI W W, YE C, WANG K X, et al. Momordica. charantia-derived extracellular vesicles-like nanovesicles protect cardiomyocytes against radiation injury via attenuating DNA damage and mitochondria dysfunction[J]. Front Cardiovasc Med, 2022, 9:864188. doi:10.3389/fcvm.2022.864188.
|
[21] |
崔会程, 夏嫱. 昆虫抗菌肽抗炎活性及基于信号通路抗炎机制的研究进展[J]. 天津医药, 2022, 50(9):1002-1008.
|
|
CUI H C, XIA Q. Research progress in anti-inflammatory activity of insect antimicrobial peptides and anti-inflammatory mechanism based on signal pathway[J]. Tianjin Med J, 2022, 50(9):1002-1008. doi:10.11958/20212862.
|
[22] |
MA Y, NICOLET J. Specificity models in MAPK cascade signaling[J]. FEBS Open Bio, 2023, 13(7):1177-1192. doi:10.1002/2211-5463.13619.
|
[23] |
GARCÍA-FLORES N, JIMÉNEZ-SUÁREZ J, GARNÉS-GARCÍA C, et al. P38 MAPK and radiotherapy:foes or friends?[J]. Cancers (Basel), 2023, 15(3):861. doi:10.3390/cancers15030861.
|
[24] |
WANG G, MA L, WANG B, et al. Tanshinone IIA accomplished protection against radiation-induced cardiomyocyte injury by regulating the p38/p53 pathway[J]. Mediators Inflamm, 2022,2022:1478181. doi:10.1155/2022/1478181.
|
[25] |
KIANG J G, CANNON G, OLSON M G, et al. Female mice are more resistant to the mixed-field (67% neutron + 33% gamma) radiation-induced injury in bone marrow and small intestine than male mice due to sustained increases in G-CSF and the Bcl-2/Bax ratio and lower miR-34a and MAPK Activation[J]. Radiat Res, 2022, 198(2):120-133. doi:10.1667/RADE-21-00201.1.
|
[26] |
SHI X, YANG J, DENG S, et al. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies[J]. J Hematol Oncol, 2022, 15(1):135. doi:10.1186/s13045-022-01349-6.
|
[27] |
AASHAQ S, BATOOL A, MIR S A, et al. TGF-β signaling:a recap of SMAD-independent and SMAD-dependent pathways[J]. J Cell Physiol, 2022, 237(1):59-85. doi:10.1002/jcp.30529.
|
[28] |
冯张鑫. 大鼠心脏低剂量照射所致损伤及其早期检测指标[D]. 贵阳: 贵州医科大学, 2021.
|
|
FENG Z X. Damage induced by low-dose irradiation of rat heart and its early detection indicators[D]. Guiyang: Guizhou Medical University, 2021. doi:10.27045/d.cnki.ggyyc.2021.000063.
|
[29] |
ZHOU X, BAO W A, ZHU X, et al. 3,3'-Diindolylmethane attenuates inflammation and fibrosis in radiation-induced lung injury by regulating NF-κB/TGF-β/Smad signaling pathways[J]. Exp Lung Res, 2022, 48(3):103-113. doi:10.1080/01902148.2022.2052208.
|
[30] |
ZHANG J, HE X, BAI X, et al. Protective effect of trimetazidine in radiation-induced cardiac fibrosis in mice[J]. J Radiat Res, 2020, 61(5):657-665. doi:10.1093/jrr/rraa043.
|
[31] |
ARORA A, BHURIA V, SINGH S, et al. Amifostine analog,DRDE-30,alleviates radiation induced lung damage by attenuating inflammation and fibrosis[J]. Life Sci, 2022, 298:120518. doi:10.1016/j.lfs.2022.120518.
|
[32] |
WANG Z, REN D, ZHENG P. The role of Rho/ROCK in epileptic seizure-related neuronal damage[J]. Metab Brain Dis, 2022, 37(4):881-887. doi:10.1007/s11011-022-00909-6.
|
[33] |
GUAN G, CANNON R D, COATES D E, et al. Effect of the Rho-Kinase/ROCK signaling pathway on cytoskeleton components[J]. Genes(Basel), 2023, 14(2):272. doi:10.3390/genes14020272.
|
[34] |
MONCEAU V, PASINETTI N, SCHUPP C, et al. Modulation of the Rho/ROCK pathway in heart and lung after thorax irradiation reveals targets to improve normal tissue toxicity[J]. Curr Drug Targets, 2010, 11(11):1395-1404. doi:10.2174/1389450111009011395.
|
[35] |
邢喜平, 任春贞, 蒋虎刚, 等. 基于Rho/Rock通路探讨当归红芪多糖对辐射诱导大鼠H9C2心肌细胞的作用机制[J]. 辽宁中医杂志, 2021, 48(7):228-231.
|
|
XING X P, REN C Z, JIANG H G, et al. Study on mechanism of angelica and hedysari polysaccharide on radiation-induced H9C2 cardiac cells based on Rho/Rock pathway[J]. Liaoning Journal of Traditional Chinese Medicine, 2021, 48(7):228-231. doi:10.13192/j.issn.1000-1719.2021.07.061.
|
[36] |
ZHANG D M, DENG J J, WU Y G, et al. MicroRNA-223-3p protect against radiation-induced cardiac toxicity by alleviating myocardial oxidative stress and programmed cell death via targeting the AMPK pathway[J]. Front Cell Dev Biol, 2021, 9:801661. doi:10.3389/fcell.2021.801661.
|
[37] |
HUANG Y, CHENG M, WANG X, et al. Dang Gui Bu Xue Tang,a conventional Chinese herb decoction,ameliorates radiation-induced heart disease via Nrf2/HMGB1 pathway[J]. Front Pharmacol, 2023, 13:1086206. doi:10.3389/fphar.2022.1086206.
|