[1] |
SUN D, WANG J, TOAN S, et al. Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance[J]. Angiogenesis, 2022, 25(3):307-329. doi:10.1007/s10456-022-09835-8.
|
[2] |
MARUHASHI T, HIGASHI Y. Pathophysiological association between diabetes mellitus and endothelial dysfunction[J]. Antioxidants (Basel), 2021, 10(8):1306-1318. doi:10.3390/antiox10081306.
|
[3] |
LUO E F, LI H X, QIN Y H, et al. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction[J]. World J Diabetes, 2021, 12(2):124-137. doi:10.4239/wjd.v12.i2.124.
|
[4] |
YASSIEN M, FAWZY O, MAHMOUD E, et al. Serum salusin-β in relation to atherosclerosis and ventricular dysfunction in patients with type 2 diabetes mellitus[J]. Diabetes Metab Syndr, 2020, 14(6):2057-2062. doi:10.1016/j.dsx.2020.10.025.
|
[5] |
ZHU X, ZHOU Y, CAI W, et al. Salusin-β mediates high glucose-induced endothelial injury via disruption of AMPK signaling pathway[J]. Biochem Biophys Res Commun, 2017, 491(2):515-521. doi:10.1016/j.bbrc.2017.06.126.
|
[6] |
ZHAO M X, ZHOU B, LING L, et al. Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy[J]. Cell Death Dis, 2017, 8(3):2690-2699. doi:10.1038/cddis.2017.106.
|
[7] |
SUN H J, CHEN D, WANG P Y, et al. Salusin-β is involved in diabetes mellitus-induced endothelial dysfunction via degradation of peroxisome proliferator-activated receptor gamma[J]. Oxid Med Cell Longev, 2017, 2017:6905217. doi:10.1155/2017/6905217.
|
[8] |
张书娅, 邵钟铭, 伍彩霞, 等. Rnd3表达改变对糖尿病大鼠内皮祖细胞生物学特性的影响[J]. 中国病理生理杂志, 2021, 37(5):834-840.
|
|
ZHANG S Y, SHAO Z M, WU C X, et al. Effects of dysregulation of Rnd3 on general biological characteristics of endothelial progenitor cells in diabetic rats[J]. Chinese Journal of Pathophysiology, 2021, 37(5):834-840. doi:10.3969/j.issn.1000-4718.2021.05.008.
|
[9] |
CAI Z, YUAN S, ZHONG Y, et al. Amelioration of endothelial dysfunction in diabetes:role of takeda G protein-coupled receptor 5[J]. Front Pharmacol, 2021, 12(1):637051-637060. doi:10.3389/fphar.2021.637051.
|
[10] |
武兵兵, 马礼科, 刘秀珠, 等. 中药通过AMPK途径对糖尿病致内皮功能障碍的保护作用及机制[J]. 中药药理与临床, 2022, 38(3):225-230.
|
|
WU B B, MA L K, LIU X Z, et al. Protective effect and mechanism of chinese medicine on endothelial cell dysfunction induced by diabetes mellitus through AMPK pathway[J]. Pharmacology and Clinics of Chinese Materia Medica, 2022, 38(3):225-230. doi:10.13412/j.cnki.zyyl.2022.03.005.
|
[11] |
SUN H, ZHANG F, XU Y, et al. Salusin-β promotes vascular calcification via nicotinamide adenine dinucleotide phosphate/reactive oxygen species-mediated Klotho downregulation[J]. Antioxid Redox Signal, 2019, 31(18):1352-1370. doi:10.1089/ars.2019.7723.
|
[12] |
LU Q B, DU Q, WANG H P, et al. Salusin-β mediates tubular cell apoptosis in acute kidney injury:Involvement of the PKC/ROS signaling pathway[J]. Redox Biol, 2020, 30(1):101411-101427. doi:10.1016/j.redox.2019.101411.
|
[13] |
SUN S, ZHANG F, PAN Y, et al. A TOR2A gene product:Salusin-β contributes to attenuated vasodilatation of spontaneously hypertensive rats[J]. Cardiovasc Drugs Ther, 2021, 35(1):125-139. doi:10.1007/s10557-020-06983-1.
|
[14] |
ARKAN A, ATUKEREN P, IKITIMUR B, et al. The importance of circulating levels of salusin-α,salusin-β,and heregulin-β1 in atherosclerotic coronary arterial disease[J]. Clin Biochem, 2021, 87(1):19-25. doi:10.1016/j.clinbiochem.2020.10.003.
|
[15] |
WANG W J, JIANG X, GAO C C, et al. Salusin-β participates in high glucose-induced HK-2 cell ferroptosis in a Nrf-2-dependent manner[J]. Mol Med Rep, 2021, 24(3):674-685. doi:10.3892/mmr.2021.12313.
|
[16] |
WANG T, ZHU H, HOU Y, et al. Ketamine attenuates high-glucose-mediated endothelial inflammation in human umbilical vein endothelial cells[J]. Can J Physiol Pharmacol, 2020, 98(3):156-161. doi:10.1139/cjpp-2019-0185.
|
[17] |
VENU V K P, SAIFEDDINE M, MIHARA K, et al. Metformin prevents hyperglycemia-associated,oxidative stress-induced vascular endothelial dysfunction:essential role for the orphan nuclear receptor human nuclear receptor 4A1(Nur77)[J]. Mol Pharmacol, 2021, 100(5):428-455. doi:10.1124/molpharm.120.000148.
|
[18] |
SUN H J, ZHAO M X, REN X S, et al. Salusin-β promotes vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via ROS/NFκB/MMP-9 pathway[J]. Antioxid Redox Signal, 2016, 24(18):1045-1057. doi:10.1089/ars.2015.6475.
|
[19] |
阳创, 薛莱, 吴阳, 等. NF-κB-iNOS/COX-2信号通路在高糖损伤血管内皮依赖性舒张中的作用[J]. 中国病理生理杂志, 2020, 36(12):2159-2165.
|
|
YANG C, XUE L, WU Y, et al. Activation of NF-κB-iNOS/COX-2 signaling pathways is involved in impaired endothelium-dependent relaxation under high glucose condition[J]. Chinese Journal of Pathophysiology, 2020, 36(12):2159-2165. doi:10.3969/j.issn.1000-4718.2020.12.006.
|
[20] |
CHEN H, JIN G. Downregulation of Salusin-β protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p[J]. Bioengineered, 2021, 12(1):6155-6165. doi:10.1080/21655979.2021.1972900.
|
[21] |
GAO J, LIANG Z, ZHAO F, et al. Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy[J]. Bioengineered, 2022, 13(5):12275-12288. doi:10.1080/21655979.2022.2067293.
|