[1] |
ZHANG Y, LEI Y, JIANG H, et al. Analysis of the correlation between the severity of neonatal hypoxic ischemic encephalopathy and multiple organ dysfunction[J]. Am J Transl Res, 2022, 14(1):311-319.
|
[2] |
SHEN L, GAN Q, YANG Y, et al. Mitophagy in cerebral ischemia and ischemia/reperfusion injury[J]. Front Aging Neurosci, 2021, 13:687246. doi:10.3389/fnagi.2021.687246.
|
[3] |
ZHU J J, YU B Y, HUANG X K, et al. Neferine protects against hypoxic-ischemic brain damage in neonatal rats by suppressing NLRP3-mediated inflammasome activation[J]. Oxid Med Cell Longev, 2021, 2021:6654954. doi:10.1155/2021/6654954.
|
[4] |
WANG L, REN W, WU Q, et al. NLRP3 inflammasome activation:A therapeutic target for cerebral ischemia-reperfusion injury[J]. Front Mol Neurosci, 2022, 15:847440. doi: 10.3389/fnmol.2022.847440.
|
[5] |
XU Q, ZHAO B, YE Y, et al. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke[J]. J Neuroinflammation, 2021, 18(1):123. doi:10.1186/s12974-021-02137-8.
|
[6] |
MISHRA S R, MAHAPATRA K K, BEHERA B P, et al. Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics[J]. Int J Biochem Cell Biol, 2021, 136:106013. doi:10.1016/j.biocel.2021.106013.
|
[7] |
BILLINGHAM L K, STOOLMAN J S, VASAN K, et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation[J]. Nat Immunol, 2022, 23(5):692-704. doi:10.1038/s41590-022-01185-3.
|
[8] |
LIN Q, LI S, JIANG N, et al. PINK1-Parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation[J]. Redox Biol, 2019, 26:101254. doi:10.1016/j.redox.2019.101254.
|
[9] |
XU Y, TANG Y, LU J, et al. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation[J]. Free Radic Biol Med, 2020, 160:871-886. doi:10.1016/j.freeradbiomed.2020.09.015.
|
[10] |
李承燕, 周璇, 唐兰芬, 等. 胰高血糖素样肽-1对新生乳鼠脑缺血再灌注损伤的影响[J]. 中国医药导报, 2022, 19(2):4-7,12.
|
|
LI C Y, ZHOU X, TANG L F, et al. Glucagon-like peptide-1 inhibits apoptosis and inflammatory response of hippocampal neurons in neonatal rats with hypoxia-reperfusion via NF-κB[J]. China Med Herald, 2022, 19(2):4-7,12. doi:10.3969/j.issn.1673-7210.2022.2.yycyzx202202002.
|
[11] |
LV S, LIU H, WANG H. The interplay between autophagy and NLRP3 inflammasome in ischemia/reperfusion injury[J]. Int J Mol Sci, 2021, 22(16):8773. doi:10.3390/ijms22168773.
|
[12] |
GONG Z, PAN J, SHEN Q, et al. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury[J]. J Neuroinflammation, 2018, 15(1):242. doi:10.1186/s12974-018-1282-6.
|
[13] |
FRANKE M, BIEBER M, KRAFT P, et al. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice[J]. Brain Behav Immun, 2021, 92:223-233. doi:10.1016/j.bbi.2020.12.009.
|
[14] |
ZHU H, JIAN Z, ZHONG Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition[J]. Front Immunol, 2021, 12:714943. doi: 10.3389/fimmu.2021.714943.
|
[15] |
CUI Y, ZHANG N N, WANG D, et al. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-κB signaling pathway in microglia[J]. J Inflamm Res, 2022, 15:3369-3385. doi:10.2147/JIR.S366927.
|
[16] |
KAUR S, SHARMA N, KUMAR V, et al. The role of mitophagy in various neurological diseases as a therapeutic approach[J]. Cell Mol Neurobiol, 2022:1-17. doi:10.1007/s10571-022-01302-8.
|
[17] |
WU M, GU X, MA Z. Mitochondrial quality control in cerebral ischemia-reperfusion injury[J]. Mol Neurobiol, 2021, 58(10):5253-5271. doi:10.1007/s12035-021-02494-8.
|
[18] |
HE Q, LI Z, MENG C, et al. Parkin-dependent mitophagy is required for the inhibition of ATF4 on NLRP3 inflammasome activation in cerebral ischemia-reperfusion injury in rats[J]. Cells, 2019, 8(8):897. doi:10.3390/cells8080897.
|
[19] |
GU L, SUN M, LI R, et al. Microglial pyroptosis:Therapeutic target in secondary brain injury following intracerebral hemorrhage[J]. Front Cell Neurosci, 2022, 16:971469. doi:10.3389/fncel.2022.971469.
|
[20] |
SAGULENKO V, VITAK N, VAJJHALA P R, et al. Caspase-1 is an apical caspase leading to caspase-3 cleavage in the AIM2 inflammasome response,independent of caspase-8[J]. J Mol Biol, 2018, 430(2):238-247. doi:10.1016/j.jmb.2017.10.028.
|
[21] |
ZHANG A, ZHANG Z, LIU Y, et al. The role of caspase family in acute brain injury: the potential therapeutic targets in the future[J]. Curr Neuropharmacol, 2022, 20(6):1194-1211. doi:10.2174/1570159X19666211111121146.
|
[22] |
LIANG Y, SONG P, CHEN W, et al. Inhibition of caspase-1 ameliorates ischemia-associated blood-brain barrier dysfunction and integrity by suppressing pyroptosis activation[J]. Front Cell Neurosci, 2020, 14:540669. doi:10.3389/fncel.2020.540669.
|