天津医药 ›› 2024, Vol. 52 ›› Issue (6): 561-566.doi: 10.11958/20240046
• 细胞与分子生物学 • 下一篇
夏雨薇1(), 乔云阳1, 刘雪薇1, 施会敏1, 曲高婷1, 张爱青2, 甘卫华1,△(
)
收稿日期:
2024-01-08
修回日期:
2024-02-01
出版日期:
2024-06-15
发布日期:
2024-06-06
通讯作者:
△E-mail:作者简介:
夏雨薇(2000),女,硕士在读,主要从事小儿肾脏疾病诊治及机制方面研究。E-mail:基金资助:
XIA Yuwei1(), QIAO Yunyang1, LIU Xuewei1, SHI Huimin1, QU Gaoting1, ZHANG Aiqing2, GAN Weihua1,△(
)
Received:
2024-01-08
Revised:
2024-02-01
Published:
2024-06-15
Online:
2024-06-06
Contact:
△E-mail: 夏雨薇, 乔云阳, 刘雪薇, 施会敏, 曲高婷, 张爱青, 甘卫华. tRF-1:30对高糖诱导的肾小管上皮细胞炎性因子表达的影响[J]. 天津医药, 2024, 52(6): 561-566.
XIA Yuwei, QIAO Yunyang, LIU Xuewei, SHI Huimin, QU Gaoting, ZHANG Aiqing, GAN Weihua. Effect of tRF-1:30 on the expression of inflammatory factors in renal tubular epithelial cells induced by high glucose[J]. Tianjin Medical Journal, 2024, 52(6): 561-566.
摘要:
目的 探讨tRF-1:30(tRF-1:30-Gln-CTG-4)对高糖(HG)诱导的肾小管上皮细胞(RTECs)中炎性因子表达的影响及分子机制。方法 将小鼠RTECs分为Control组、HG组、HG+tRF-1:30 mimic组、HG+tRF-1:30 NC组、HG+si-IKZF2组(IKAROS家族锌指2,tRF-1:30抑制剂)、HG+si-NC组。实时荧光定量PCR检测tRF-1:30、肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、单核细胞趋化蛋白-1(MCP-1)和IKZF2 mRNA的水平。酶联免疫吸附试验检测炎性因子水平,Western blot检测IKZF2蛋白表达水平,双萤光素酶报告实验验证tRF-1:30和IKZF2的关系。结果 在HG诱导的RTECs中炎性因子的表达水平显著升高,而tRF-1:30表达水平显著降低。过表达tRF-1:30显著降低HG诱导的RTECs中炎性因子的表达水平。IKZF2在HG诱导的RTECs中显著高表达,进一步敲低IKZF2可抑制炎性因子的释放,而过表达tRF-1:30后IKZF2的表达水平下调。双萤光素酶报告实验进一步验证tRF-1:30与IKZF2可能存在靶向关系。结论 过表达tRF-1:30可能通过负向调控IKZF2的表达进而抑制HG诱导的RTECs炎性因子的释放。
中图分类号:
基因 名称 | 引物序列(5′→3′) | 产物 大小/bp |
---|---|---|
TNF-α | 上游:CCTTATCTACTCCCAGGTTCTC | 109 |
下游:GAGGCTGACTTTCTCCTGGTATG | ||
IL-6 | 上游:CTGCAAGAGACTTCCATCCAG | 131 |
下游:AGTGGTATAGACAGGTCTGTTGG | ||
MCP-1 | 上游:TAAAAACCTGGATCGGAACCAAA | 115 |
下游:GCATTAGCTTCAGATTTACGGGT | ||
IKZF2 | 上游:AAGGGGAACACGCCAATATGG | 135 |
下游:GCTGCCTGTCACACTCTTCA | ||
β-actin | 上游:CATCCGTAAAGACCTCTATGCCAAC | 171 |
下游:ATGGAGCCACCGATCCACA | ||
tRF-1:30 | 上游:GGTTCCATGGTGTAATGGTGAGCACTCTGG | 220 |
下游:ACGCTTCACGAATTTGCGTGTC | ||
U6 | 上游:CTCGCTTCGGCAGCACATATACT | 93 |
下游:ACGCTTCACGAATTTGCGTGTC |
表1 RT-qPCR引物序列
Tab.1 Sequences of RT-qPCR primers
基因 名称 | 引物序列(5′→3′) | 产物 大小/bp |
---|---|---|
TNF-α | 上游:CCTTATCTACTCCCAGGTTCTC | 109 |
下游:GAGGCTGACTTTCTCCTGGTATG | ||
IL-6 | 上游:CTGCAAGAGACTTCCATCCAG | 131 |
下游:AGTGGTATAGACAGGTCTGTTGG | ||
MCP-1 | 上游:TAAAAACCTGGATCGGAACCAAA | 115 |
下游:GCATTAGCTTCAGATTTACGGGT | ||
IKZF2 | 上游:AAGGGGAACACGCCAATATGG | 135 |
下游:GCTGCCTGTCACACTCTTCA | ||
β-actin | 上游:CATCCGTAAAGACCTCTATGCCAAC | 171 |
下游:ATGGAGCCACCGATCCACA | ||
tRF-1:30 | 上游:GGTTCCATGGTGTAATGGTGAGCACTCTGG | 220 |
下游:ACGCTTCACGAATTTGCGTGTC | ||
U6 | 上游:CTCGCTTCGGCAGCACATATACT | 93 |
下游:ACGCTTCACGAATTTGCGTGTC |
组别 | mRNA | ||||||
---|---|---|---|---|---|---|---|
TNF-α | IL-6 | MCP-1 | tRF-1:30 | ||||
Control组 | 1.01±0.09 | 1.00±0.14 | 0.99±0.08 | 1.02±0.08 | |||
HG组 | 2.47±0.29 | 2.68±0.35 | 2.01±0.28 | 0.27±0.06 | |||
t | 8.228** | 7.690** | 6.126** | 13.300** | |||
组别 | 蛋白/(ng/L) | ||||||
TNF-α | IL-6 | MCP-1 | |||||
Control组 | 70.33±8.67 | 42.33±5.20 | 30.67±5.16 | ||||
HG组 | 202.50±26.47 | 165.50±20.42 | 65.17±4.73 | ||||
t | 8.224** | 10.120** | 8.538** |
表2 Control组和HG组细胞tRF-1:30和炎性因子表达水平 (n=3,$\bar{x}±s$)
Tab.2 Expression levels of tRF-1:30 and inflammatory factors in the control group and the HG group
组别 | mRNA | ||||||
---|---|---|---|---|---|---|---|
TNF-α | IL-6 | MCP-1 | tRF-1:30 | ||||
Control组 | 1.01±0.09 | 1.00±0.14 | 0.99±0.08 | 1.02±0.08 | |||
HG组 | 2.47±0.29 | 2.68±0.35 | 2.01±0.28 | 0.27±0.06 | |||
t | 8.228** | 7.690** | 6.126** | 13.300** | |||
组别 | 蛋白/(ng/L) | ||||||
TNF-α | IL-6 | MCP-1 | |||||
Control组 | 70.33±8.67 | 42.33±5.20 | 30.67±5.16 | ||||
HG组 | 202.50±26.47 | 165.50±20.42 | 65.17±4.73 | ||||
t | 8.224** | 10.120** | 8.538** |
组别 | mRNA | 蛋白/(ng/L) | |||||
---|---|---|---|---|---|---|---|
TNF-α | IL-6 | MCP-1 | tRF-1:30 | TNF-α | IL-6 | MCP-1 | |
Control组 | 1.00±0.04 | 0.99±0.11 | 0.97±0.06 | 1.02±0.27 | 70.33±4.04 | 42.53±6.15 | 32.30±4.30 |
HG组 | 1.97±0.17a | 1.65±0.19a | 1.54±0.09a | 0.27±0.06a | 203.70±23.16a | 153.90±15.12a | 58.86±6.40a |
HG+tRF-1:30 NC组 | 1.95±0.13a | 1.69±0.07a | 1.56±0.18a | 0.28±0.10a | 205.00±23.84a | 174.13±6.97a | 64.10±5.37a |
HG+tRF-1:30 mimic组 | 1.10±0.11bc | 1.09±0.13bc | 1.21±0.03bc | 1 294.00±233.50bc | 93.67±7.57bc | 63.57±13.46bc | 34.73±8.18bc |
F | 54.470** | 23.210** | 20.860** | 92.110** | 43.450** | 99.280** | 12.400** |
表3 过表达tRF-1:30后各组细胞tRF-1:30和炎性因子表达水平 (n=3,$\bar{x}±s$)
Tab.3 Expression levels of tRF-1:30 and inflammatory factors after overexpression of tRF-1:30 in each group
组别 | mRNA | 蛋白/(ng/L) | |||||
---|---|---|---|---|---|---|---|
TNF-α | IL-6 | MCP-1 | tRF-1:30 | TNF-α | IL-6 | MCP-1 | |
Control组 | 1.00±0.04 | 0.99±0.11 | 0.97±0.06 | 1.02±0.27 | 70.33±4.04 | 42.53±6.15 | 32.30±4.30 |
HG组 | 1.97±0.17a | 1.65±0.19a | 1.54±0.09a | 0.27±0.06a | 203.70±23.16a | 153.90±15.12a | 58.86±6.40a |
HG+tRF-1:30 NC组 | 1.95±0.13a | 1.69±0.07a | 1.56±0.18a | 0.28±0.10a | 205.00±23.84a | 174.13±6.97a | 64.10±5.37a |
HG+tRF-1:30 mimic组 | 1.10±0.11bc | 1.09±0.13bc | 1.21±0.03bc | 1 294.00±233.50bc | 93.67±7.57bc | 63.57±13.46bc | 34.73±8.18bc |
F | 54.470** | 23.210** | 20.860** | 92.110** | 43.450** | 99.280** | 12.400** |
组别 | IKZF2蛋白 | IKZF2 mRNA |
---|---|---|
Control组 | 1.00±0.05 | 1.00±0.09 |
HG组 | 1.45±0.01a | 1.53±0.06a |
HG+si-NC组 | 1.41±0.02a | 1.53±0.11a |
HG+si-IKZF2组 | 0.65±0.11bc | 0.19±0.03bc |
F | 376.400** | 191.400** |
表4 各组IKZF2蛋白和mRNA相对表达量比较 (n=3,$\bar{x}±s$)
Tab.4 Comparison of the relative expression levels of IKZF2 protein and mRNA between the four groups
组别 | IKZF2蛋白 | IKZF2 mRNA |
---|---|---|
Control组 | 1.00±0.05 | 1.00±0.09 |
HG组 | 1.45±0.01a | 1.53±0.06a |
HG+si-NC组 | 1.41±0.02a | 1.53±0.11a |
HG+si-IKZF2组 | 0.65±0.11bc | 0.19±0.03bc |
F | 376.400** | 191.400** |
组别 | mRNA | |||||
---|---|---|---|---|---|---|
TNF-α | IL-6 | MCP-1 | ||||
Control组 | 1.00±0.05 | 1.02±0.12 | 1.05±0.10 | |||
HG组 | 1.93±0.15a | 1.68±0.14a | 1.53±0.06a | |||
HG+si-NC组 | 1.90±0.10a | 1.70±0.10a | 1.56±0.14a | |||
HG+si-IKZF2组 | 0.46±0.06bc | 0.63±0.10bc | 0.47±0.21bc | |||
F | 157.000** | 60.760** | 41.500** | |||
组别 | 蛋白/(ng/L) | |||||
TNF-α | IL-6 | MCP-1 | ||||
Control组 | 70.33±4.04 | 42.53±6.15 | 32.30±4.30 | |||
HG组 | 203.70±23.16a | 153.90±15.12a | 58.86±6.40a | |||
HG+si-NC组 | 197.80±30.48a | 148.10±18.40a | 66.70±5.59a | |||
HG+si-IKZF2组 | 109.47±26.39bc | 70.27±7.76bc | 46.33±5.47bc | |||
F | 24.000** | 57.360** | 12.190** |
表5 敲低IKZF2表达后各组细胞炎性因子mRNA及蛋白表达水平比较 (n=3,$\bar{x}±s$)
Tab.5 Comparison of mRNA and protein expression levels of inflammatory factors after knockdown of IKZF2 expression between the four groups
组别 | mRNA | |||||
---|---|---|---|---|---|---|
TNF-α | IL-6 | MCP-1 | ||||
Control组 | 1.00±0.05 | 1.02±0.12 | 1.05±0.10 | |||
HG组 | 1.93±0.15a | 1.68±0.14a | 1.53±0.06a | |||
HG+si-NC组 | 1.90±0.10a | 1.70±0.10a | 1.56±0.14a | |||
HG+si-IKZF2组 | 0.46±0.06bc | 0.63±0.10bc | 0.47±0.21bc | |||
F | 157.000** | 60.760** | 41.500** | |||
组别 | 蛋白/(ng/L) | |||||
TNF-α | IL-6 | MCP-1 | ||||
Control组 | 70.33±4.04 | 42.53±6.15 | 32.30±4.30 | |||
HG组 | 203.70±23.16a | 153.90±15.12a | 58.86±6.40a | |||
HG+si-NC组 | 197.80±30.48a | 148.10±18.40a | 66.70±5.59a | |||
HG+si-IKZF2组 | 109.47±26.39bc | 70.27±7.76bc | 46.33±5.47bc | |||
F | 24.000** | 57.360** | 12.190** |
图3 Western blot检测加入tRF-1:30后IKZF2蛋白表达水平 A:Control组;B:HG组;C:HG+tRF-1:30 mimic组;D:HG+tRF-1:30 NC组。
Fig.3 IKZF2 protein expression level after addition of tRF-1:30 detected by Western blot assay
组别 | IKZF2 mRNA | IKZF2蛋白 |
---|---|---|
Control组 | 1.02±0.02 | 0.99±0.04 |
HG组 | 2.23±0.29a | 1.34±0.12a |
HG+tRF-1:30 NC组 | 2.06±0.31 | 1.53±0.07 |
HG+tRF-1:30 mimic组 | 1.54±0.11bc | 0.73±0.04bc |
F | 18.910** | 66.600** |
表6 过表达tRF-1:30对高糖诱导后IKZF2表达的影响 (n=3,$\bar{x}±s$)
Tab.6 Effect of tRF-1:30 overexpression on IKZF2 expression induced by high glucose
组别 | IKZF2 mRNA | IKZF2蛋白 |
---|---|---|
Control组 | 1.02±0.02 | 0.99±0.04 |
HG组 | 2.23±0.29a | 1.34±0.12a |
HG+tRF-1:30 NC组 | 2.06±0.31 | 1.53±0.07 |
HG+tRF-1:30 mimic组 | 1.54±0.11bc | 0.73±0.04bc |
F | 18.910** | 66.600** |
[1] | GUPTA S, DOMINGUEZ M, GOLESTANEH L. Diabetic kidney disease:an update[J]. Med Clin North Am, 2023, 107(4):689-705. doi:10.1016/j.mcna.2023.03.004. |
[2] | CHEN S J, LV L L, LIU B C, et al. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease[J]. Cell Prolif, 2020, 53(3):e12763. doi:10.1111/cpr.12763. |
[3] | YANG W X, LIU Y, ZHANG S M, et al. Epac activation ameliorates tubulointerstitial inflammation in diabetic nephropathy[J]. Acta Pharmacol Sin, 2022, 43(3):659-671. doi:10.1038/s41401-021-00689-2. |
[4] | LU S, WEI X, TAO L, et al. A novel tRNA-derived fragment tRF-3022b modulates cell apoptosis and M2 macrophage polarization via binding to cytokines in colorectal cancer[J]. J Hematol Oncol, 2022, 15(1):176. doi:10.1186/s13045-022-01388-z. |
[5] | YU X, XIE Y, ZHANG S, et al. tRNA-derived fragments:Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections[J]. Theranostics, 2021, 11(1):461-469. doi:10.7150/thno.51963. |
[6] | JI J, RONG J, ZHENG H, et al. Expression profiles of tRNA derived fragments in high glucose treated tubular epithelial cells[J]. Exp Ther Med, 2023, 25(1):26. doi:10.3892/etm.2022.11725. |
[7] | LIU C, YANG M, LI L, et al. A glimpse of inflammation and anti-inflammation therapy in diabetic kidney disease[J]. Front Physiol, 2022, 13:909569. doi:10.3389/fphys.2022.909569. |
[8] | JUNG S W, MOON J Y. The role of inflammation in diabetic kidney disease[J]. Korean J Intern Med, 2021, 36(4):753-766. doi:10.3904/kjim.2021.174. |
[9] | 黄湘宁, 王屹菲, 俞赟丰, 等. 基于文献的糖尿病肾病动物模型应用分析[J]. 中国实验方剂学杂志, 2023, 29(13):188-196. |
HUANG X N, WANG Y F, YU Y F, et al. Animal modeling of diabetic nephropathy[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(13):188-196. doi:10.13422/j.cnki.syfjx.20230517. | |
[10] | 李申, 刘志红. 糖尿病肾病肾小管损伤机制[J]. 肾脏病与透析肾移植杂志, 2018, 27(3):265-268. |
LI S, LIU Z H. Mechanism of renal tubular injury in diabetic nephropathy[J]. Journal of Kidney Disease and Dialysis Kidney Transplantation, 2018, 27(3):265-268. doi:10.3969/j.issn.1006-298X.2018.03.015. | |
[11] | 杨娟, 张厚芬, 吴松, 等. LncRNA OIP5-AS1调节miR-25-3p/SOX4轴对高糖诱导的人肾小管上皮细胞生物学过程的影响[J]. 天津医药, 2023, 51(2):131-138. |
YANG J, ZHANG H F, WU S, et al. Effect of LncRNA OIP5-AS1 regulating miR-25-3p/SOX4 axis on the biological process of human renal tubular epithelial cells induced by high glucose[J]. Tianjin Med J, 2023, 51(2):131-138. doi:10.11958/20220849. | |
[12] | CHU X, HE C, SANG B, et al. Transfer RNAs-derived small RNAs and their application potential in multiple diseases[J]. Front Cell Dev Biol, 2022, 10:954431. doi:10.3389/fcell.2022.954431. |
[13] | FAN X R, HUANG Y, SU Y, et al. Exploring the regulatory mechanism of tRNA-derived fragments 36 in acute pancreatitis based on small RNA sequencing and experiments[J]. World J Gastroenterol, 2023, 29(30):4642-4656. doi:10.3748/wjg.v29.i30.4642. |
[14] | LIU S, CHEN Y, REN Y, et al. A tRNA-derived RNA fragment plays an important role in the mechanism of arsenite -induced cellular responses[J]. Sci Rep, 2018, 8(1):16838. doi:10.1038/s41598-018-34899-2. |
[15] | GAO X, QIAO Y, LI S, et al. tRF-003634 alleviates adriamycin-induced podocyte injury by reducing the stability of TLR4 mRNA[J]. PLoS One, 2023, 18(10):e293043. doi:10.1371/journal.pone.0293043. |
[16] | 王娥, 赵唐明, 郑辉, 等. tRF-003634对阿霉素肾病小鼠足细胞凋亡的作用和机制研究[J]. 徐州医科大学学报, 2022, 42(12):866-873. |
WANG E, ZHAO T M, ZHENG H, et al. Effects and mechanism of tRF-003634 on foot cell apoptosis in mice with adriamycin nephropathy[J]. Journal of Xuzhou Medical University, 2022, 42(12):866-873. doi:10.3969/j.issn.2096-3882.2022.12.002. | |
[17] | 黎妞, 马东红. 炎症因子与糖尿病肾脏疾病的研究进展[J]. 医学综述, 2021, 27(14):2870-2874. |
LI N, MA D H. Research progress of inflammatory factors and diabetic kidney disease[J]. Medical Recapitulate, 2021, 27(14):2870-2874. doi:10.3969/j.issn.1006-2084.2021.14.030. | |
[18] | XU B, LIU F, GAO Y, et al. High expression of IKZF2 in malignant T cells promotes disease progression in cutaneous T cell lymphoma[J]. Acta Derm Venereol, 2021, 101(12):adv613. doi:10.2340/actadv.v101.570. |
[19] | MAKITA S, TAKATORI H, NAKAJIMA H. Post-transcriptional regulation of immune responses and inflammatory diseases by RNA-binding ZFP36 family proteins[J]. Front Immunol, 2021, 12:711633. doi:10.3389/fimmu.2021.711633. |
[20] | ZHOU M, KANG Y, LI J, et al. Omics-based integrated analysis identified IKZF2 as a biomarker associated with lupus nephritis[J]. Sci Rep, 2022, 12(1):9612. doi:10.1038/s41598-022-13336-5. |
[21] | XIE S, WEI H, PENG A, et al. Ikzf2 regulates the development of ICOS(+) Th cells to mediate immune response in the spleen of s.japonicum-infected C57BL/6 Mice[J]. Front Immunol, 2021, 12:687919. doi:10.3389/fimmu.2021.687919. |
[1] | 侯维玲, 乔云阳, 吴小芸, 施会敏, 曲高婷, 张爱青. 锌指蛋白281抑制高糖诱导的肾小管上皮细胞上皮间质转化和细胞外基质合成[J]. 天津医药, 2024, 52(7): 720-726. |
[2] | 王娴, 刘霞明, 陈曼玉, 赵君, 王立东. 基于机器学习对2型糖尿病肾病预测模型的构建及验证[J]. 天津医药, 2024, 52(7): 775-780. |
[3] | 谷巍, 张惠娜, 侯丽萍, 于敏, 程黎蓉. 脂质相关指数与糖尿病肾病相关性研究[J]. 天津医药, 2024, 52(12): 1308-1312. |
[4] | 胡明月, 李鑫, 高磊, 关明杰. 蒙古黄芪皂苷对铅暴露致发育期大鼠神经炎症与肠道菌群紊乱的影响[J]. 天津医药, 2023, 51(9): 955-960. |
[5] | 王晋祥, 续国武, 靳衡, 贺斌, 柴艳芬. 亚低温治疗对猪心脏骤停体外心肺复苏后凝血功能及炎性因子的影响[J]. 天津医药, 2023, 51(9): 968-971. |
[6] | 张金武, 谢丁玲, 陈莉. 一叶萩碱对大鼠脑缺血再灌注损伤后神经功能的影响[J]. 天津医药, 2023, 51(9): 977-982. |
[7] | 王翠, 杨畅, 金玉, 高蜜, 张雯, 王琼, 金海涛. 木犀草苷对阿尔茨海默病模型细胞凋亡和炎性因子表达的研究[J]. 天津医药, 2023, 51(7): 701-706. |
[8] | 马玲, 钟利国, 崔裕如, 刘彬. 梓醇对IL-1β诱导软骨细胞损伤的保护机制研究[J]. 天津医药, 2023, 51(7): 718-723. |
[9] | 杨娟, 张厚芬, 吴松, 陈莹, 罗华荣. LncRNA OIP5-AS1调节miR-25-3p/SOX4轴对高糖诱导的人肾小管上皮细胞生物学过程的影响[J]. 天津医药, 2023, 51(2): 131-138. |
[10] | 李明霞, 乔海霞, 王晓玲, 贾丽媛, 胡利梅, 任卫东. 雷公藤多苷对高糖诱导人肾小管上皮细胞凋亡及CXCL10/CXCR3轴的影响[J]. 天津医药, 2023, 51(2): 139-143. |
[11] | 许莉敏, 谢燕. 外周血单核细胞DNMT1及血清IL-6在糖尿病肾脏病中的表达及意义[J]. 天津医药, 2023, 51(2): 194-197. |
[12] | 陈宇, 黄国东, 覃婷, 张泽朝, 沈小楠, 许艺镡, 刘少芳. miRNA-21在糖尿病肾脏病的作用机制及中药干预新进展[J]. 天津医药, 2023, 51(12): 1387-1392. |
[13] | 谭安隽, 杨晶晶, 李天荣. 鸢尾素与新诊断2型糖尿病的相关性研究[J]. 天津医药, 2023, 51(1): 91-94. |
[14] | 姜赫, 刘武, 吕纯懿, 张诏. 环状RNA在糖尿病肾病中的研究进展[J]. 天津医药, 2022, 50(7): 780-784. |
[15] | 陈灵芝, 钟开义, 陈立国. MTHFR基因启动子甲基化与糖尿病肾病发病的关系研究[J]. 天津医药, 2022, 50(6): 633-638. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||