[1] |
KHOURY J D, SOLARY E, ABLA O, et al. The 5th edition of the World Health Organization Classification of haematolymphoid tumours:myeloid and histiocytic/dendritic neoplasms[J]. Leukemia, 2022, 36(7):1703-1719. doi:10.1038/s41375-022-01613-1.
|
[2] |
BERNARD E, TUECHLER H, GREENBERG P L, et al. Molecular international prognostic scoring system for myelodysplastic syndromes[J]. NEJM Evid, 2022, 1(7):EVIDoa2200008. doi:10.1056/EVIDoa2200008.
|
[3] |
RODRIGUEZ-SEVILLA J J, COLLA S. T-cell dysfunctions in myelodysplastic syndromes[J]. Blood, 2024, 143(14):1329-1343. doi:10.1182/blood.2023023166.
|
[4] |
NIU Y, ZHOU Q. Th17 cells and their related cytokines:vital players in progression of malignant pleural effusion[J]. Cell Mol Life Sci, 2022, 79(4):194. doi:10.1007/s00018-022-04227-z.
|
[5] |
PAN Y, YANG W, TANG B, et al. The protective and pathogenic role of Th17 cell plasticity and function in the tumor microenvironment[J]. Front Immunol, 2023, 14:1192303. doi:10.3389/fimmu.2023.1192303.
|
[6] |
ROY D, BOSE S, PATI S, et al. GFI1/HDAC1-axis differentially regulates immunosuppressive CD73 in human tumor-associated FOXP3(+)Th17 and inflammation-linked Th17 cells[J]. Eur J Immunol, 2021, 51(5):1206-1217. doi:10.1002/eji.202048892.
|
[7] |
FENG X, XU H, YIN L, et al. CD4+ T-cell subsets in aplastic anemia,myelodysplastic syndrome,and acute myelogenous leukemia patients:a comparative analysis[J]. Clin Lab, 2023, 69(7). doi:10.7754/Clin.Lab.2023.221220.
|
[8] |
GREENBERG P L, TUECHLER H, SCHANZ J, et al. Revised international prognostic scoring system for myelodysplastic syndromes[J]. Blood, 2012, 120(12):2454-2465. doi:10.1182/blood-2012-03-420489.
|
[9] |
CERBONI S, GEHRMANN U, PREITE S, et al. Cytokine-regulated Th17 plasticity in human health and diseases[J]. Immunology, 2021, 163(1):3-18. doi:10.1111/imm.13280.
|
[10] |
BOUCH R J, ZHANG J, MILLER B C, et al. Distinct inflammatory Th17 subsets emerge in autoimmunity and infection[J]. J Exp Med, 2023, 220(10):e20221911. doi:10.1084/jem.20221911.
|
[11] |
WANG X, SUN B, WANG Y, et al. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases[J]. Front Immunol, 2024, 15:1333993. doi:10.3389/fimmu.2024.1333993.
|
[12] |
GAMAL W, SAHAKIAN E, PINILLA-IBARZ J. The role of Th17 cells in chronic lymphocytic leukemia:friend or foe?[J]. Blood Adv, 2023, 7(11):2401-2417. doi:10.1182/bloodadvances.2022008985.
|
[13] |
XING J, MAN C, LIU Y, et al. Factors impacting the benefits and pathogenicity of Th17 cells in the tumor microenvironment[J]. Front Immunol, 2023, 14:1224269. doi:10.3389/fimmu.2023.1224269.
|
[14] |
KORDASTI S Y, AFZALI B, LIM Z, et al. IL-17-producing CD4(+)T cells,pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome[J]. Br J Haematol, 2009, 145(1):64-72. doi:10.1111/j.1365-2141.2009.07593.x.
|
[15] |
BOUCHLIOU I, MILTIADES P, NAKOU E, et al. Th17 and Foxp3(+)T regulatory cell dynamics and distribution in myelodysplastic syndromes[J]. Clin Immunol, 2011, 139(3):350-359. doi:10.1016/j.clim.2011.03.001.
|
[16] |
LI J, YUE L, WANG H, et al. Th17 cells exhibit antitumor effects in MDS possibly through augmenting functions of CD8+ T cells[J]. J Immunol Res, 2016, 2016:9404705. doi:10.1155/2016/9404705.
|
[17] |
SUTANTO H, NINGTYAS M C, RACHMA B, et al. Th17 cells in cancer: plasticity-driven immunopathology and therapeutic opportunity[J]. Immunol Cell Biol, 2025. doi:10.1111/imcb.70043.
|
[18] |
LV J, LIU Z, REN X, et al. γδT cells,a key subset of T cell for cancer immunotherapy[J]. Front Immunol, 2025, 16:1562188. doi:10.3389/fimmu.2025.1562188.
|
[19] |
ANVAR M T, RASHIDAN K, ARSAM N, et al. Th17 cell function in cancers:immunosuppressive agents or anti-tumor allies?[J]. Cancer Cell Int, 2024, 24(1):355. doi:10.1186/s12935-024-03525-9.
|
[20] |
MOHY EL-DIN A, ALSHAARAWY B A, KANDEEL E Z, et al. Immunopathological dysregulation in acute myeloid leukemia:the impact of T-bet,RORγt,and FOXP3 on disease dynamics[J]. Cells, 2025, 14(7):528. doi:10.3390/cells14070528.
|
[21] |
MA C, DONG X. Colorectal cancer-derived Foxp3(+)IL-17(+)T cells suppress tumour-specific CD8+ T cells[J]. Scand J Immunol, 2011, 74(1):47-51. doi:10.1111/j.1365-3083.2011.02539.x.
|
[22] |
PAN B, YAO Y, WU H, et al. N-glycosylated LTβR increases the Th17/Treg cell ratio in liver cancer by blocking RORC ubiquitination and FOXP3 transcription[J]. Cell Death Dis, 2025, 16(1):421. doi:10.1038/s41419-025-07738-2.
|