天津医药 ›› 2025, Vol. 53 ›› Issue (7): 776-784.doi: 10.11958/20250966

• 综述 • 上一篇    

基于声学信息检测阻塞性睡眠呼吸暂停的研究进展

余辉1(), 刘浩1,2, 蔡凤丽3, 赵婧1, 白相森1, 田国梁1, 张含悦1, 张丽媛4,()   

  1. 1 天津大学生物医学工程系(邮编300072)
    2 天津市第四中心医院网络信息科(邮编300072)
    3 山东省巨野县中医医院妇产科(邮编300072)
    4 天津市第四中心医院设备物资科(邮编300072)
  • 收稿日期:2025-03-10 修回日期:2025-05-05 出版日期:2025-07-15 发布日期:2025-07-21
  • 通讯作者: E-mail:13752631906@163.com
  • 作者简介:余辉(1976),男,副教授,主要从事生物医学信号处理方面研究。E-mail:yuhui@tju.edu.cn

New advances on detecting obstructive sleep apnea based on acoustic information

YU Hui1(), LIU Hao1,2, CAI Fengli3, ZHAO Jing1, BAI Xiangsen1, TIAN Guoliang1, ZHANG Hanyue1, ZHANG Liyuan4,()   

  1. 1 Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
    2 Department of Network Information, Tianjin 4th Center Hospital, Tianjin 300072, China
    3 Department of Obstetrics and Gynecology, Juye County Hospital of Traditional Chinese Medicine, Tianjin 300072, China
    4 Department of Equipment and Material, Tianjin 4th Centre Hospital, Tianjin 300072, China
  • Received:2025-03-10 Revised:2025-05-05 Published:2025-07-15 Online:2025-07-21
  • Contact: E-mail:13752631906@163.com

摘要:

阻塞性睡眠呼吸暂停(OSA)是一种常见的睡眠障碍,表现为睡眠时反复发生上气道塌陷和阻塞。多导睡眠监测是OSA诊断的金标准,但价高、耗时且易引起患者不适。近年来,基于声学信息检测OSA的方法逐渐成为研究热点。该文就近年来基于鼾声和语音信号的OSA自动检测技术最新研究进展进行综述,系统梳理了其在诊断、严重程度判断及阻塞部位识别方面的应用。鼾声和语音信号的声学特征在OSA筛查中具有重要价值,结合机器学习与深度学习模型可实现较高准确度。未来研究应重点关注声学特征与病理生理机制的关联、多模态信息融合及可穿戴设备的临床应用,以推动OSA智能化、无创化、低成本筛查技术的发展。

关键词: 睡眠呼吸暂停, 阻塞性, 打鼾, 语音, 检测, 阻塞位置, 严重程度

Abstract:

Obstructive sleep apnea (OSA) is a common sleep disorder characterized by repeated episodes of upper airway collapse and obstruction during sleep. Polysomnography is the gold standard for diagnosing OSA, but it is expensive, time-consuming, and can cause discomfort for patients. In recent years, acoustic-based approaches for detecting OSA have emerged as a research focus. This review summarizes recent advances in OSA automatic detection techniques based on snoring and speech signals, and systematically examines their applications in diagnosis, severity assessment, and localization of obstruction sites. Findings indicate that the acoustic features of snoring and speech signals hold significant value for OSA screening, and when combined with machine learning and deep learning models, it can achieve high diagnostic accuracy. Future research should focus on elucidating the relationship between acoustic features and the pathophysiological mechanisms of OSA, integrating multimodal information, and advancing the clinical application of wearable devices, with the aim of promoting intelligent, non-invasive, and cost-effective screening technologies for OSA.

Key words: sleep apnea, obstructive, snoring, speech, detection, obstruction location, severity

中图分类号: