| [1] |
DEVIĆ PAVLIĆ S, SAFTIĆ MARTINOVIĆ L, SUŠANJ ŠEPIĆ T, et al. Comparative analysis of controlled ovarian hyperstimulation and modified natural cycle protocols on gene expression and quality of oocytes,zygotes,and embryos in assisted reproductive technology(ART)[J]. Int J Mol Sci, 2024, 25(24):13287. doi:10.3390/ijms252413287.
|
| [2] |
ZHAO J, WANG W, ZHANG L, et al. Dynamic metabolism during early mammalian embryogenesis[J]. Development, 2023, 150(20):dev202148. doi:10.1242/dev.202148.
|
| [3] |
FLUKS M, COLLIER R, WALEWSKA A, et al. How great thou ART:biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies[J]. Front Cell Dev Biol, 2024, 12:1342905. doi:10.3389/fcell.2024.1342905.
|
| [4] |
ZHANG C H, LIU X Y, WANG J. Essential role of granulosa cell glucose and lipid metabolism on oocytes and the potential metabolic imbalance in polycystic ovary syndrome[J]. Int J Mol Sci, 2023, 24(22):16247. doi:10.3390/ijms242216247.
|
| [5] |
ZHANG Y, LI T, WANG Y, et al. Key glycometabolism during oocyte maturation and early embryonic development[J]. Reproduction, 2025, 169(3):e240275. doi:10.1530/REP-24-0275.
|
| [6] |
PENG M, KEPPEKE G D, TSAI L K, et al. The IMPDH cytoophidium couples metabolism and fetal development in mice[J]. Cell Mol Life Sci, 2024, 81(1):210. doi:10.1007/s00018-024-05233-z.
|
| [7] |
MA Y, ZHANG Y, YANG W, et al. The nuclear localization of ACLY guards early embryo development through recruiting P300 and HAT1 to promote histone acetylation and transcription[J]. Adv Sci (Weinh), 2025, 12(31):e14367. doi:10.1002/advs.202414367.
|
| [8] |
JIANG H, CHEN L, TIAN T, et al. Inflammation mediates the effect of adiposity and lipid metabolism indicators on the embryogenesis of PCOS women undergoing in vitro fertilization/intracytoplasmic sperm injection[J]. Front Endocrinol (Lausanne), 2023, 14:1198602. doi:10.3389/fendo.2023.1198602.
|
| [9] |
ZHU J, ZHU M, ZHAO H, et al. Metformin alleviates cadmium-induced reproductive toxicity by enhancing mitochondrial biosynthesis and epigenetic modifications in female mice[J]. Toxicol Appl Pharmacol, 2025, 500:117390. doi:10.1016/j.taap.2025.117390.
|
| [10] |
BERTOLDO A, PIZZOL D, YON D K, et al. Resveratrol and female fertility:a systematic review[J]. Int J Mol Sci, 2024, 25(23):12792. doi:10.3390/ijms252312792.
|
| [11] |
MO D, ZENG Z H, SUI X, et al. Role of glucose metabolism and signaling pathways at different stages of ovarian folliculogenesis[J]. Reprod Dev Med, 2024, 8(2):111-120. doi:10.1097/RD9.0000000000000079.
|
| [12] |
RAMÍREZ-MARTÍN N, BUIGUES A, RODRÍGUEZ-VARELA C, et al. Nicotinamide mononucleotide supplementation improves oocyte developmental competence in different ovarian damage conditions[J]. Am J Obstet Gynecol, 2025, 233(2):112.e1-112.e20. doi:10.1016/j.ajog.2025.02.006.
|
| [13] |
GUO T, LIU H, XU B, et al. Epidemiology,genetic etiology and intervention of premature ovarian insufficiency[J]. Endocr Rev, 2025. doi:10.1210/endrev/bnaf011. [Online ahead of print].
|
| [14] |
ZHANG X, ZHANG L, XIANG W. The impact of mitochondrial dysfunction on ovarian aging[J]. J Transl Med, 2025, 23(1):211. doi:10.1186/s12967-025-06223-w.
|
| [15] |
YANG S, LUO W, SUN Y, et al. Novel perspectives on growth hormone regulation of ovarian function:mechanisms, formulations, and therapeutic applications[J]. Front Endocrinol(Lausanne), 2025, 16:1576333. doi:10.3389/fendo.2025.1576333.
|
| [16] |
DOWNS S M, HUMPHERSON P G, LEESE H J. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway[J]. Biol Reprod, 1998, 58(4):1084-1094. doi:10.1095/biolreprod58.4.1084.
|
| [17] |
ZHOU J, ZHOU L, LAN M, et al. Challenges and strategies in the application of assisted reproductive technology in non-human primates:review[J]. Biol Reprod, 2025, 113(2):257-288. doi:10.1093/biolre/ioaf109.
|
| [18] |
KANG T, ZHAO S, SHI L, et al. Glucose metabolism is required for oocyte maturation of zebrafish[J]. Biochem Biophys Res Commun, 2021, 559:191-196. doi:10.1016/j.bbrc.2021.04.059.
|
| [19] |
ALVAREZ G M, BARRIOS EXPÓSITO M J, ELIA E, et al. Effects of gonadotrophins and insulin on glucose uptake in the porcine cumulus-oocyte complex during IVM[J]. Reprod Fertil Dev, 2019, 31(8):1353-1359. doi:10.1071/RD18321.
|
| [20] |
XIONG Y Y, ZHU H Y, SHI R J, et al. Regulation of glucose metabolism:Effects on oocyte,preimplantation embryo,assisted reproductive technology and embryonic stem cell[J]. Heliyon, 2024, 10(19):e38551. doi:10.1016/j.heliyon.2024.e38551.
|
| [21] |
LEE S H, RINAUDO P F. Metabolic regulation of preimplantation embryo development in vivo and in vitro:Molecular mechanisms and insights[J]. Biochem Biophys Res Commun, 2024, 726:150256. doi:10.1016/j.bbrc.2024.150256.
|
| [22] |
WANG M, XUE J, LI C, et al. Glucose promoting the early embryonic development by increasing the lipid synthesis at 2-cell stage[J]. Front Cell Dev Biol, 2023, 11:1208501. doi:10.3389/fcell.2023.1208501.
|
| [23] |
MORELLI A M, SCHOLKMANN F. Should the standard model of cellular energy metabolism be reconsidered?Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation[J]. Biochimie, 2024, 221:99-109. doi:10.1016/j.biochi.2024.01.018.
|
| [24] |
REYES J S, CORTÉS-RÍOS J, FUENTES-LEMUS E, et al. Competitive oxidation of key pentose phosphate pathway enzymes modulates the fate of intermediates and NAPDH production[J]. Free Radic Biol Med, 2024, 222:505-518. doi:10.1016/j.freeradbiomed.2024.05.050.
|
| [25] |
YU X, WU H, SU J, et al. Acetyl-CoA metabolism maintains histone acetylation for syncytialization of human placental trophoblast stem cells[J]. Cell Stem Cell, 2024, 31(9):1280-1297.e7. doi:10.1016/j.stem.2024.07.003.
|
| [26] |
CAO D, BERGMANN J, ZHONG L, et al. Selective utilization of glucose metabolism guides mammalian gastrulation[J]. Nature, 2024, 634(8035):919-928. doi:10.1038/s41586-024-08044-1.
|
| [27] |
LI X, HE Y, WU S, et al. Regulation of SIRT1 in ovarian function:PCOS treatment[J]. Curr Issues Mol Biol, 2023, 45(3):2073-2089. doi:10.3390/cimb45030133.
|
| [28] |
THOMPSON E, HENSLEY J, TAYLOR R S. Effect of high glucose on embryological development of zebrafish,brachyodanio,rerio through Wnt pathway[J]. Int J Mol Sci, 2024, 25(17):9443. doi:10.3390/ijms25179443.
|
| [29] |
GARDNER D K, WALE P L, COLLINS R, et al. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome[J]. Hum Reprod, 2011, 26(8):1981-1986. doi:10.1093/humrep/der143.
|
| [30] |
DUCREUX B, PATRAT C, TRASLER J, et al. Transcriptomic integrity of human oocytes used in ARTs:technical and intrinsic factor effects[J]. Hum Reprod Update, 2024, 30(1):26-47. doi:10.1093/humupd/dmad025.
|
| [31] |
ZHANG L, ZHAO J, LAM S M, et al. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development[J]. Nat Cell Biol, 2024, 26(2):278-293. doi:10.1038/s41556-023-01341-3.
|
| [32] |
BISOGNO S, DEPCIUCH J, GULZAR H, et al. Female-age-dependent changes in the lipid fingerprint of the mammalian oocytes[J]. Hum Reprod, 2024, 39(12):2754-2767. doi:10.1093/humrep/deae225.
|
| [33] |
YUAN X, ZHANG X, LIN Y, et al. Proteome of granulosa cells lipid droplets reveals mechanisms regulating lipid metabolism at hierarchical and pre-hierarchical follicle in goose[J]. Front Vet Sci, 2025, 12:1544718. doi:10.3389/fvets.2025.1544718.
|
| [34] |
LIU T, QU J, TIAN M, et al. Lipid metabolic process involved in oocyte maturation during folliculogenesis[J]. Front Cell Dev Biol, 2022, 10:806890. doi:10.3389/fcell.2022.806890.
|
| [35] |
JAFFE L A, EGBERT J R. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle[J]. Annu Rev Physiol, 2017, 79:237-260. doi:10.1146/annurev-physiol-022516-034102.
|
| [36] |
SIMERMAN A A, HILL D L, GROGAN T R, et al. Intrafollicular cortisol levels inversely correlate with cumulus cell lipid content as a possible energy source during oocyte meiotic resumption in women undergoing ovarian stimulation for in vitro fertilization[J]. Fertil Steril, 2015, 103(1):249-257. doi:10.1016/j.fertnstert.2014.09.034.
|
| [37] |
CHEN Y, WU Y, PI J, et al. tsRNA-00764 regulates estrogen and progesterone synthesis and lipid deposition by targeting PPAR-γ in duck granulosa cells[J]. Int J Mol Sci, 2024, 25(20):11251. doi:10.3390/ijms252011251.
|
| [38] |
FAN Y, ZHANG C, ZHU G. Profiling of RNA N6-methyladenosine methylation during follicle selection in chicken ovary[J]. Poult Sci, 2019, 98(11):6117-6124. doi:10.3382/ps/pez277.
|
| [39] |
KHAN R, JIANG X, HAMEED U, et al. Role of lipid metabolism and signaling in mammalian oocyte maturation,quality,and acquisition of competence[J]. Front Cell Dev Biol, 2021, 9:639704. doi:10.3389/fcell.2021.639704.
|
| [40] |
AL HARAKE S N, ABEDIN Y, HATOUM F, et al. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities[J]. Adipocyte, 2024, 13(1):2403380. doi:10.1080/21623945.2024.2403380.
|
| [41] |
YU H, ZHANG Y, ZHANG Y, et al. Effects of exogenous regulation of PPARγ on ovine oocyte maturation and embryonic development in vitro[J]. Vet Sci, 2024, 11(9):397. doi:10.3390/vetsci11090397.
|
| [42] |
MORGAN P K, PERNES G, HUYNH K, et al. A lipid atlas of human and mouse immune cells provides insights into ferroptosis susceptibility[J]. Nat Cell Biol, 2024, 26(4):645-659. doi:10.1038/s41556-024-01377-z.
|
| [43] |
STAMATIADIS P, COSEMANS G, BOEL A, et al. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo[J]. Hum Reprod, 2022, 37(8):1760-1773. doi:10.1093/humrep/deac138.
|
| [44] |
CHEN J, PEI B, SHI S. Association between egg consumption and risk of obesity:A comprehensive review:egg consumption and obesity[J]. Poult Sci, 2025, 104(2):104660. doi:10.1016/j.psj.2024.104660.
|
| [45] |
ZHAO W, LIU K, ZHANG Y, et al. The efficacy of orally administered L-carnitine in alleviating ovarian dysfunctions has laid the foundation for targeted in vivo use:a study employing self-control and propensity score matching[J]. Front Endocrinol (Lausanne), 2024, 15:1440182. doi:10.3389/fendo.2024.1440182.
|
| [46] |
VASCONCELOS E M, BRAGA R F, LEAL G R, et al. Impact of reducing lipid content during in vitro embryo production:A systematic review and meta-analysis[J]. Theriogenology, 2024, 222:31-44. doi:10.1016/j.theriogenology.2024.04.003.
|
| [47] |
RICHANI D, DUNNING K R, THOMPSON J G, et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27(1):27-47. doi:10.1093/humupd/dmaa043.
|
| [48] |
LI L, ZHU S, SHU W, et al. Characterization of metabolic patterns in mouse oocytes during meiotic maturation[J]. Mol Cell, 2020, 80(3):525-540.e9. doi:10.1016/j.molcel.2020.09.022.
|
| [49] |
SCOTT R 3rd, ZHANG M, SELI E. Metabolism of the oocyte and the preimplantation embryo:implications for assisted reproduction[J]. Curr Opin Obstet Gynecol, 2018, 30(3):163-170. doi:10.1097/GCO.0000000000000455.
|
| [50] |
GARDNER D K, HARVEY A J. Blastocyst metabolism[J]. Reprod Fertil Dev, 2015, 27(4):638-654. doi:10.1071/RD14421.
|
| [51] |
DE OLIVEIRA FERNANDES G, MILAZZOTTO M P, FIDELIS A, et al. Biochemical markers for pregnancy in the spent culture medium of in vitro produced bovine embryos[J]. Biol Reprod, 2021, 105(2):481-490. doi:10.1093/biolre/ioab095.
|