
天津医药 ›› 2026, Vol. 54 ›› Issue (2): 139-144.doi: 10.11958/20252509
收稿日期:2025-07-15
修回日期:2025-09-10
出版日期:2026-02-15
发布日期:2026-02-12
通讯作者:
丁利军
E-mail:1193321540@qq.com;dinglijun@nju.edu.cn
作者简介:吴蝶(2000),女,博士在读,主要从事生殖医学方面研究。E-mail:Received:2025-07-15
Revised:2025-09-10
Published:2026-02-15
Online:2026-02-12
Contact:
DING Lijun
E-mail:1193321540@qq.com;dinglijun@nju.edu.cn
吴蝶, 丁利军. 氨基酸代谢调控卵巢衰老研究新进展[J]. 天津医药, 2026, 54(2): 139-144.
WU Die, DING Lijun. New advances in research on amino acid metabolism regulation in ovarian aging[J]. Tianjin Medical Journal, 2026, 54(2): 139-144.
摘要:
卵巢衰老的核心特征是卵泡储备耗竭与卵母细胞质量下降。近年来,氨基酸代谢紊乱被证实与卵巢衰老进程密切相关。该文系统综述了氨基酸代谢网络在卵巢衰老中的作用,包括支链氨基酸代谢失调、谷氨酰胺依赖性增强与代谢效率下降、一碳代谢障碍、精氨酸-一氧化氮-多胺轴紊乱以及牛磺酸水平变化等多种衰老相关代谢变化,通过多种机制损害卵泡发育、颗粒细胞功能及卵母细胞质量,不仅为理解卵巢衰老的病理机制提供了新视角,更为开发通过营养干预或靶向调节氨基酸代谢以延缓卵巢衰老、改善女性生育潜能的新策略提供了理论依据。
中图分类号:
| 代谢通路/机制 | 关键氨基酸 | 生理作用 | 与卵巢衰老的关联 | 潜在干预方向 |
|---|---|---|---|---|
| 蛋白质合成与修复[ | 所有必需氨基酸 | 维持卵巢细胞结构完整性;支持激素合成与分泌 | 合成不足→细胞功能衰退、激素失衡;修复障碍→损伤累积 | 保证优质蛋白摄入;优化氨基酸比例 |
| 能量供应[ | BCAAs;Gln | 通过糖异生/三羧酸循环(TCA)循环供能;支持卵泡发育与卵母细胞成熟 | 代谢效率下降→卵巢能量受限;线粒体功能障 碍→卵子质量降低 | 改善线粒体功能;调节BCAAs平衡 |
| 抗氧化[ | 含硫氨基酸(蛋氨酸/半胱氨酸);甘氨酸/丝氨酸 | 合成GSH;清除活性氧(ROS) | GSH减少→氧化损伤累积;DNA/蛋白质损伤→卵泡闭锁加速;卵母细胞质量下降 | 补充N-乙酰半胱氨酸(NAC);增强抗氧化 |
| mTORC1信号通路[ | 亮氨酸(最强激活剂) | 调节细胞生长、增殖与自噬 | 慢性激活→抑制自噬;卵泡过度激活与耗竭;炎症反应增加→加速OR下降 | mTOR抑制剂(如雷帕霉素);限制亮氨酸过量 |
| 通用控制非阻遏蛋白2 (GCN2)应激通路[ | 所有氨基酸(缺乏时激活) | 应对营养压力;抑制非必需蛋白合成 | 持续激活→代谢失衡标志,损害细胞功能 | 维持氨基酸稳态;避免长期营养不良 |
| 一碳代谢[ | 甘氨酸/丝氨酸/蛋氨酸 | 提供甲基基团;支持DNA合成/修复;调控表观遗传 | 一碳代谢障碍→同型半胱氨酸升高;DNA损伤累积;基因表达异常→加速卵巢衰老 | 补充叶酸/B族维生素;优化甲基供体 |
| 微环境调节[ | Arg | 合成一氧化氮(NO)与多胺;调节卵巢血流与激素分泌 | NO减少→血流灌注不足;颗粒细胞-卵母细胞通讯异常→卵泡发育障碍 | Arg补充;改善血管功能 |
| 神经内分泌调节[ | 色氨酸/酪氨酸 | 合成血清素/多巴胺前体;影响下丘脑-垂体-卵巢轴功能 | 代谢紊乱→生殖激素分泌失调;排卵障碍/周期紊乱 | 平衡膳食摄入;管理应激反应 |
表1 氨基酸代谢通路调控卵巢衰老进展
Tab.1 Progress in the regulation of ovarian aging by amino acid metabolic pathways
| 代谢通路/机制 | 关键氨基酸 | 生理作用 | 与卵巢衰老的关联 | 潜在干预方向 |
|---|---|---|---|---|
| 蛋白质合成与修复[ | 所有必需氨基酸 | 维持卵巢细胞结构完整性;支持激素合成与分泌 | 合成不足→细胞功能衰退、激素失衡;修复障碍→损伤累积 | 保证优质蛋白摄入;优化氨基酸比例 |
| 能量供应[ | BCAAs;Gln | 通过糖异生/三羧酸循环(TCA)循环供能;支持卵泡发育与卵母细胞成熟 | 代谢效率下降→卵巢能量受限;线粒体功能障 碍→卵子质量降低 | 改善线粒体功能;调节BCAAs平衡 |
| 抗氧化[ | 含硫氨基酸(蛋氨酸/半胱氨酸);甘氨酸/丝氨酸 | 合成GSH;清除活性氧(ROS) | GSH减少→氧化损伤累积;DNA/蛋白质损伤→卵泡闭锁加速;卵母细胞质量下降 | 补充N-乙酰半胱氨酸(NAC);增强抗氧化 |
| mTORC1信号通路[ | 亮氨酸(最强激活剂) | 调节细胞生长、增殖与自噬 | 慢性激活→抑制自噬;卵泡过度激活与耗竭;炎症反应增加→加速OR下降 | mTOR抑制剂(如雷帕霉素);限制亮氨酸过量 |
| 通用控制非阻遏蛋白2 (GCN2)应激通路[ | 所有氨基酸(缺乏时激活) | 应对营养压力;抑制非必需蛋白合成 | 持续激活→代谢失衡标志,损害细胞功能 | 维持氨基酸稳态;避免长期营养不良 |
| 一碳代谢[ | 甘氨酸/丝氨酸/蛋氨酸 | 提供甲基基团;支持DNA合成/修复;调控表观遗传 | 一碳代谢障碍→同型半胱氨酸升高;DNA损伤累积;基因表达异常→加速卵巢衰老 | 补充叶酸/B族维生素;优化甲基供体 |
| 微环境调节[ | Arg | 合成一氧化氮(NO)与多胺;调节卵巢血流与激素分泌 | NO减少→血流灌注不足;颗粒细胞-卵母细胞通讯异常→卵泡发育障碍 | Arg补充;改善血管功能 |
| 神经内分泌调节[ | 色氨酸/酪氨酸 | 合成血清素/多巴胺前体;影响下丘脑-垂体-卵巢轴功能 | 代谢紊乱→生殖激素分泌失调;排卵障碍/周期紊乱 | 平衡膳食摄入;管理应激反应 |
| [1] | PETRICK L M, WISE L A, COLICINO E, et al. The chemical exposome on ovarian aging in adult women:a narrative review[J]. Curr Pollut Rep, 2025, 11(1):13. doi:10.1007/s40726-025-00341-1. |
| [2] | MARIANA K. Key figures on Europe-2022 edition[R]. The EU in the World, 2022. |
| [3] | REN Y, CHENG X, NIU C, et al. Fertility intention of young people of childbearing age in China after the implementation of the two-child policy-A systematic review and meta-analysis[J]. BMC Public Health, 2024, 24(1):3518. doi:10.1186/s12889-024-20956-1. |
| [4] | KANG B, WANG X, AN X, et al. Polyamines in ovarian aging and disease[J]. Int J Mol Sci, 2023, 24(20):15330. doi:10.3390/ijms242015330. |
| [5] | CHEN Y, FANG M, DUAN W, et al. FGA,a new target of histone acetylation,inhibits apoptosis of granulosa cells in follicles[J]. Biol Res, 2025, 58(1):43. doi:10.1186/s40659-025-00623-4. |
| [6] | HIRAIKE O, IWASE A, LAGANÀ A S. Editorial:Ovarian aging: pathophysiology and recent development of maintaining ovarian reserve,volume III[J]. Front Endocrinol (Lausanne), 2024, 15:1460934. doi:10.3389/fendo.2024.1460934. |
| [7] | WANG Z, JIANG S, ZHANG W, et al. Functional characterization of two β-hexosaminidase a isoforms during ovarian development in macrobrachium nipponense[J]. Int J Mol Sci, 2025, 26(12):5459. doi:10.3390/ijms26125459. |
| [8] | ZHANG L, LIANG Z, ZHANG W, et al. Quantification of five intracellular and extracellular methionine pathway intermediates using stable isotope dilution UHPLC-MS/MS[J]. J Chromatogr A, 2025, 1755:466036. doi:10.1016/j.chroma.2025.466036. |
| [9] | VACHIAS C, TOURLONIAS C, GRELÉE L, et al. Gap junctions allow transfer of metabolites between germ cells and somatic cells to promote germ cell growth in the Drosophila ovary[J]. PLoS Biol, 2025, 23(2):e3003045. doi:10.1371/journal.pbio.3003045. |
| [10] | LI Y, PENG Y, NIE G, et al. Huyang yangkun formula enhances ovarian function and delays reproductive aging by influencing hypothalamic GnRH/LH pulse release through GAT-1/GABA/GABAAR2[J]. Drug Des Devel Ther, 2025, 19:2677-2691. doi:10.2147/DDDT.S504610. |
| [11] | JIN C, WANG X, YANG J, et al. Molecular and genetic insights into human ovarian aging from single-nuclei multi-omics analyses[J]. Nat Aging, 2025, 5(2):275-290. doi:10.1038/s43587-024-00762-5. |
| [12] | OTÁVIO K S, PASSOS J, SILVA R F, et al. Comprehensive proteomic profiling of early antral follicles from sheep[J]. Anim Reprod Sci, 2023, 248:107153. doi:10.1016/j.anireprosci.2022.107153. |
| [13] | HAN Z, WEN X, GE L, et al. Multi-omics analysis reveals the attenuation effect of C-phycocyanin on aging-induced subfertility in female mice[J]. Food Funct, 2025, 16(11):4367-4382. doi:10.1039/d5fo00344j. |
| [14] | DHALIWAL N K, MUFFAT J, LI Y. mTORC1 and mTORC2 synergy in human neural development,disease,and regeneration[J]. Neural Regen Res, 2026, 21(4):1552-1553. doi:10.4103/NRR.NRR-D-24-00961. |
| [15] | PAPEŽ M, JIMÉNEZ LANCHO V, EISENHUT P, et al. SLAM-seq reveals early transcriptomic response mechanisms upon glutamine deprivation in Chinese hamster ovary cells[J]. Biotechnol Bioeng, 2023, 120(4):970-986. doi:10.1002/bit.28320. |
| [16] | SECOMANDI L, BORGHESAN M, VELARDE M, et al. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions[J]. Hum Reprod Update, 2022, 28(2):172-189. doi:10.1093/humupd/dmab038. |
| [17] | ZHENG H, LIANG X, ZHOU H, et al. Integrated gut microbiota and fecal metabolome analyses of the effect of Lycium barbarum polysaccharide on D-galactose-induced premature ovarian insufficiency[J]. Food Funct, 2023, 14(15):7209-7221. doi:10.1039/d3fo01659e. |
| [18] | WANG J, JIA R, CELI P, et al. Resveratrol alleviating the ovarian function under oxidative stress by alternating microbiota related tryptophan-kynurenine pathway[J]. Front Immunol, 2022, 13:911381. doi:10.3389/fimmu.2022.911381. |
| [19] | WANG H, FENG L, PEI Z, et al. Gut microbiota metabolism of branched-chain amino acids and their metabolites can improve the physiological function of aging mice[J]. Aging Cell, 2025, 24(4):e14434. doi:10.1111/acel.14434. |
| [20] | CHEN T, PAN F, HUANG Q, et al. Metabolic phenotyping reveals an emerging role of ammonia abnormality in Alzheimer's disease[J]. Nat Commun, 2024, 15(1):3796. doi:10.1038/s41467-024-47897-y. |
| [21] | PATEL C H, POWELL J D. More TOR:The expanding role of mTOR in regulating immune responses[J]. Immunity, 2025, 58(7):1629-1645. doi:10.1016/j.immuni.2025.06.010. |
| [22] | SMITS M, SCHOMAKERS B V, VAN WEEGHEL M, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction[J]. Hum Reprod, 2023, 38(11):2208-2220. doi:10.1093/humrep/dead177. |
| [23] | CHEN W, LI M L, ZENG G, et al. Gut microbiota-derived metabolite phenylacetylglutamine in cardiovascular and metabolic diseases[J]. Pharmacol Res, 2025, 217:107794. doi:10.1016/j.phrs.2025.107794. |
| [24] | MANI S, SRIVASTAVA V, SHANDILYA C, et al. Mitochondria:the epigenetic regulators of ovarian aging and longevity[J]. Front Endocrinol (Lausanne), 2024, 15:1424826. doi:10.3389/fendo.2024.1424826. |
| [25] | WANG Y, EAPEN V V, LIANG Y, et al. WSTF nuclear autophagy regulates chronic but not acute inflammation[J]. Nature, 2025, 644(8077):780-789. doi:10.1038/s41586-025-09234-1. |
| [26] | DU Z Q, XIE J B, JI S Y, et al. Spermidine prevents iron overload-induced impaired bone mass by activating SIRT1/SOD2 signaling in senile rat model[J]. Redox Rep, 2025, 30(1):2485666. doi:10.1080/13510002.2025.2485666. |
| [27] | CHEN J M, CHEN W H, WANG Z Y, et al. PGD:Shared gene linking polycystic ovary syndrome and endometrial cancer, influencing proliferation and migration through glycometabolism[J]. Cancer Sci, 2024, 115(9):2908-2922. doi:10.1111/cas.16212. |
| [28] | ZHAO X, ZHOU H, PAN Z, et al. Ginsenoside Rd and chrysophanol: Modulating the serine-glycine-one-carbon pathway to enhance neuroprotection in intracerebral hemorrhage[J]. Bioorg Chem, 2025, 160:108493. doi:10.1016/j.bioorg.2025.108493. |
| [29] | XIAO Y, PENG X, PENG Y, et al. Macrophage-derived extracellular vesicles regulate follicular activation and improve ovarian function in old mice by modulating local environment[J]. Clin Transl Med, 2022, 12(10):e1071. doi:10.1002/ctm2.1071. |
| [30] | PENG B, YAN M Y, CHEN Y R, et al. The methyl-CpG binding domain 2 regulates peptidylarginine deiminase 4 expression and promotes neutrophil extracellular trap formation via the Janus kinase 2 signaling pathway in experimental severe asthma[J]. Ann Med, 2025, 57(1):2458207. doi:10.1080/07853890.2025.2458207. |
| [31] | ZHOU C, GUO Q, LIN J, et al. Single-cell atlas of human ovaries reveals the role of the pyroptotic macrophage in ovarian aging[J]. Adv Sci(Weinh), 2024, 11(4):e2305175. doi:10.1002/advs.202305175. |
| [32] | LI Q, ZHAO Y, GUO H, et al. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment[J]. Autophagy, 2023, 19(10):2639-2656. doi:10.1080/15548627.2023.2213984. |
| [33] | ZHANG Y, BAI J, CUI Z, et al. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging[J]. Nat Aging, 2023, 3(11):1372-1386. doi:10.1038/s43587-023-00498-8. |
| [34] | YE Z, CHENG M, LIAN W, et al. GPX4 deficiency-induced ferroptosis drives endometrial epithelial fibrosis in polycystic ovary syndrome[J]. Redox Biol, 2025, 83:103615. doi:10.1016/j.redox.2025.103615. |
| [35] | MOKHTARI S, MAHDAVI A H, JAFARPOUR F, et al. Taurine,alpha lipoic acid and vitamin B6 ameliorate the reduced developmental competence of immature mouse oocytes exposed to methylglyoxal[J]. Sci Rep, 2024, 14(1):17937. doi:10.1038/s41598-024-66785-5. |
| [36] | LIU Y, LIU T, LI X, et al. Tauroursodeoxycholic acid inhibits endothelial-mesenchymal transition in high glucose-treated human umbilical vein endothelial cells[J]. Tissue Cell, 2025, 93:102764. doi:10.1016/j.tice.2025.102764. |
| [37] | HAO M, CHEN Z, WANG P, et al. Bioactive fraction of processed Curcumae Rhizoma-Sparganii Rhizoma anti-liver fibrosis by regulate taurine metabolism through PI3K/AKT pathway[J]. J Ethnopharmacol, 2025, 351:120090. doi:10.1016/j.jep.2025.120090. |
| [38] | SHI Y, ZHONG L, FAN Y, et al. Taurine inhibits hydrogen peroxide-induced oxidative stress, inflammatory response and apoptosis in liver of Monopterus albus[J]. Fish Shellfish Immunol, 2022, 128:536-546. doi:10.1016/j.fsi.2022.08.029. |
| [39] | DING Q, CAO F, ZHUGE H, et al. Hepatic NMNAT1 is required to defend against alcohol-associated fatty liver disease[J]. Sci Adv, 2025, 11(26):eadt6195. doi:10.1126/sciadv.adt6195. |
| [40] | LARANJEIRA A C, BERGER S, KOHLBRENNER T, et al. Nutritional vitamin B12 regulates RAS/MAPK-mediated cell fate decisions through one-carbon metabolism[J]. Nat Commun, 2024, 15(1):8178. doi:10.1038/s41467-024-52556-3. |
| [41] | ZHANG W, ZHANG J, ZHANG Y, et al. The up-regulation of RIPK3 mediated by ac4C modification promotes oxidative stress-induced granulosa cell senescence by inhibiting the Nrf2/HO-1 pathway[J]. IUBMB Life, 2025, 77(1):e2944. doi:10.1002/iub.2944. |
| [42] | NARULA J G, WIGNALL S M. PLK-1 suppresses centrosome maturation and microtubule polymerization to ensure faithful oocyte meiosis[J]. J Cell Biol, 2025, 224(9):e202503080. doi:10.1083/jcb.202503080. |
| [43] | BAI J, ZHANG Y, LI N, et al. Supplementation of spermidine enhances the quality of postovulatory aged porcine oocytes[J]. Cell Commun Signal, 2024, 22(1):499. doi:10.1186/s12964-024-01881-7. |
| [44] | LI T, LIU J, LIU K, et al. Alpha-ketoglutarate ameliorates induced premature ovarian insufficiency in rats by inhibiting apoptosis and upregulating glycolysis[J]. Reprod Biomed Online, 2023, 46(4):673-685. doi:10.1016/j.rbmo.2023.01.005. |
| [45] | JOGINI V, JENSEN M Ø, SHAW D E. Gating and modulation of an inward-rectifier potassium channel[J]. J Gen Physiol, 2023, 155(2):e202213085. doi:10.1085/jgp.202213085. |
| [46] | FARAHANI A, FARAHANI A, KASHFI K, et al. Inducible nitric oxide synthase (iNOS):More than an inducible enzyme? Rethinking the classification of NOS isoforms[J]. Pharmacol Res, 2025, 216:107781. doi:10.1016/j.phrs.2025.107781. |
| [47] | ZHANG S, LIU Q, CHANG M, et al. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis[J]. Cell Death Dis, 2023, 14(5):340. doi:10.1038/s41419-023-05859-0. |
| [48] | HAZIMEH D, MASSOUD G, PARISH M, et al. Green tea and benign gynecologic disorders:a new trick for an old beverage?[J]. Nutrients, 2023, 15(6):1439. doi:10.3390/nu15061439. |
| [49] | LI L, YANG J, JIA L, et al. A dual-drug strategy to enhance the function of cryopreserved ovaries by promoting revascularization and inhibiting follicle over-activation[J]. Reprod Biol Endocrinol, 2025, 23(1):95. doi:10.1186/s12958-025-01422-y. |
| [50] | LIU S, JIA Y, MENG S, et al. Mechanisms of and potential medications for oxidative stress in ovarian granulosa cells:a review[J]. Int J Mol Sci, 2023, 24(11):9205. doi:10.3390/ijms24119205. |
| [51] | HUANG P, ZHOU Y, TANG W, et al. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice[J]. J Nutr Biochem, 2022, 101:108911. doi:10.1016/j.jnutbio.2021.108911. |
| [52] | UMEHARA T, WINSTANLEY Y E, ANDREAS E, et al. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary[J]. Sci Adv, 2022, 8(24):eabn4564. doi:10.1126/sciadv.abn4564. |
| [1] | 于洋, 谷梦青. 女性生殖健康调控机制与研究进展[J]. 天津医药, 2026, 54(2): 113-116. |
| [2] | 谷梦青, 李佳林, 于洋. 丹酚酸B对卵巢衰老小鼠生殖功能的影响及机制探讨[J]. 天津医药, 2026, 54(2): 117-121. |
| [3] | 朱琳, 张雪玲, 吴纭祺, 史若锦, 范勇, 金龙. 糖脂互作在卵母细胞与胚胎发育中的研究进展[J]. 天津医药, 2026, 54(2): 132-138. |
| [4] | 席瑞, 郭东霞, 冯凯, 张东方, 张强, 杨学礼, 李同民. 1990—2021年全球和中国女性多囊卵巢综合征的疾病负担及10年趋势预测[J]. 天津医药, 2026, 54(2): 211-215. |
| [5] | 杨怡, 朵鸿, 杨亚男, 刘云, 梁凤仪, 杨雪琴. 基于肿瘤标志物的实体瘤疗效评价标准在晚期卵巢癌疗效评估中的价值[J]. 天津医药, 2026, 54(1): 46-51. |
| [6] | 黄伟, 王健键, 黄英, 杨俊. 复方苦参注射液联合化疗及贝伐珠单抗对卵巢癌患者近期疗效的影响[J]. 天津医药, 2026, 54(1): 88-92. |
| [7] | 刘志鹏, 张小文, 李佩贤, 陈奕豪, 周丹, 杨胜利, 陈柱星, 刘佳. 年轻血浆微环境对老年小鼠衰老卵巢的再生作用[J]. 天津医药, 2025, 53(8): 808-813. |
| [8] | 李林森, 冯玉梅. 卵巢切除小鼠的骨重塑特征研究[J]. 天津医药, 2025, 53(6): 566-570. |
| [9] | 熊学义, 张雪松, 刘小娜, 郑新月, 刘常茹. 中枢性性早熟女童血清Kisspeptin、LH的水平及意义[J]. 天津医药, 2025, 53(5): 478-482. |
| [10] | 吕丽凤, 高亚克, 王丽. 上皮性卵巢癌患者外周血T淋巴细胞水平和病理参数对预后的预测价值[J]. 天津医药, 2025, 53(5): 488-491. |
| [11] | 范哲华, 刘建荣. 葡萄糖依赖性促胰岛素多肽与多囊卵巢综合征相关性的研究进展[J]. 天津医药, 2024, 52(9): 996-999. |
| [12] | 徐琼芳, 钟斐, 李子帅. 淫羊藿苷调节SDF-1/CXCR4信号通路对多囊卵巢综合征大鼠卵巢颗粒细胞凋亡的影响[J]. 天津医药, 2024, 52(7): 727-732. |
| [13] | 吴静, 范志娟, 刘树业. 慢性乙型肝炎发展为肝细胞癌过程中血浆游离氨基酸水平的变化及临床意义[J]. 天津医药, 2024, 52(7): 738-742. |
| [14] | 解有成, 王菲, 徐进, 于晓辉. SIRT1在糖尿病心肌病发病中的研究进展[J]. 天津医药, 2024, 52(4): 443-448. |
| [15] | 汪爱华, 张飞忠, 王红英. 麝香酮调节SHH介导的自噬对卵巢癌细胞恶性进展的影响[J]. 天津医药, 2024, 52(2): 142-147. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
