[1] |
HILL N R, FATOBA S T, OKE J L, et al. Global prevalence of chronic kidney disease - A systematic review and Meta-analysis[J]. PLoS One, 2016, 11(7):e0158765. doi:10.1371/journal.pone.0158765.
|
[2] |
DONG Y, ZHANG Q, WEN J, et al. Ischemic duration and frequency determines AKI-to-CKD progression monitored by dynamic changes of tubular biomarkers in IRI mice[J]. Front Physiol, 2019, 10:153. doi:10.3389/fphys.2019.00153.
|
[3] |
张菁菁, 曹新岭, 王顺. Klotho蛋白在缺血再灌注急性肾损伤中的动态变化[J]. 中国血液净化, 2021, 20(4):258-262.
|
|
ZHANG J J, CAO X L, WANG S. Dynamic changes of Klotho protein in ischemia- reperfusion of acute kidney injury patients[J]. Chin J Blood Purif, 2021, 20(4):258-262. doi:10.3969/j.issn.1671-4091.2021.04.010.
|
[4] |
BLACK L M, LEVER J M, TRAYLOR A M, et al. Divergent effects of AKI to CKD models on inflammation and fibrosis[J]. Am J Physiol Renal Physiol, 2018, 315(4):F1107-F1118. doi:10.1152/ajprenal.00179.2018.
|
[5] |
VENKATACHALAM M A, WEINBERG J M, KRIZ W, et al. Failed tubule recovery, AKI-CKD transition, and kidney disease progression[J]. J Am Soc Nephrol, 2015, 26(8):1765-1776. doi:10.1681/ASN.2015010006.
|
[6] |
HU M C, SHI M, ZHANG J, et al. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective[J]. Kidney Int, 2010, 78(12):1240-1251. doi:10.1038/ki.2010.328.
|
[7] |
SEO M Y, YANG J, LEE J Y, et al. Renal Klotho expression in patients with acute kidney injury is associated with the severity of the injury[J]. Korean J Intern Med, 2015, 30(4):489-495. doi:10.3904/kjim.2015.30.4.489.
|
[8] |
HU M C, KURO-O M, MOE O W. Klotho and chronic kidney disease[J]. Contrib Nephrol, 2013, 180:47-63. doi:10.1159/000346778.
|
[9] |
RAY S K, MASARKAR N, MUKHERJEE S. Implications of Klotho protein for managing kidney disease-an emerging role in therapeutics and molecular medicine[J]. Curr Mol Med, 2021, 21(6):484-494. doi:10.2174/1566524020666201120143313.
|
[10] |
NEYRA J A, HU M C, MOE O W. Klotho in clinical nephrology:Diagnostic and therapeutic implications[J]. Clin J Am Soc Nephrol, 2020, 16(1):162-176. doi:10.2215/CJN.02840320.
|
[11] |
谢志勇, 李锐钊, 梁馨苓. 急性肾损伤进展至慢性肾脏病的机制研究进展[J]. 中华肾脏病杂志, 2020, 36(9):731-736.
|
|
XIE Z Y, LI R Z, LIANG X L. Research progress in the pathogenesis of acute renal injury to chronic kidney disease[J]. Chin J Nephrol, 2020, 36(9):731-736. doi:10.3760/cma.j.cn441217-20200109-00130.
|
[12] |
LIU Q F, YE J M, YU L X, et al. Klotho mitigates cyclosporine A (CsA)-induced epithelial-mesenchymal transition (EMT) and renal fibrosis in rats[J]. Int Urol Nephrol, 2017, 49(2):345-352. doi:10.1007/s11255-016-1439-0.
|
[13] |
TAKENAKA T, INOUE T, MIYAZAKI T, et al. Klotho suppresses the renin-angiotensin system in adriamycin nephropathy[J]. Nephrol Dial Transplant, 2017, 32(5):791-800. doi:10.1093/ndt/gfw340.
|
[14] |
YIN S, ZHANG Q, YANG J, et al. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(7):1207-1216. doi:10.1016/j.bbamcr.2017.03.002.
|
[15] |
章炜, 王鸣, 费晓, 等. Klotho对缺血再灌注急性肾损伤的影响研究[J]. 浙江医学, 2020, 42(20):2175-2184.
|
|
ZHANG W, WANG M, FEI X, et al. Effects of Klotho on acute kidney injury induced by ischemia reperfusion[J]. Zhejiang Med J, 2020, 42(20):2175-2184. doi:10.12056/j.issn.1006-2785.2020.42.20.2020-1755.
|