[1] |
MORENO-MATEO F, PEREA S H, ONEL K B. Chronic recurrent multifocal osteomyelitis:diagnosis and treatment[J]. Curr Opin Pediatr, 2021, 33(1):90-96. doi:10.1097/MOP.0000000000000970.
|
[2] |
URISH K L, CASSAT J E. Staphylococcus aureus osteomyelitis:Bone,bugs,and surgery[J]. Infect Immun, 2020, 88(7):e00932-19. doi:10.1128/IAI.00932-19.
|
[3] |
FANTONI M, TACCARI F, GIOVANNENZE F. Systemic antibiotic treatment of chronic osteomyelitis in adults[J]. Eur Rev Med Pharmacol Sci, 2019, 23(2 Suppl):258-270. doi:10.26355/eurrev_201904_17500.
|
[4] |
YEAGER S D, OLIVER J E, SHORMAN M A, et al. Comparison of linezolid step-down therapy to standard parenteral therapy in methicillin-resistant Staphylococcus aureus bloodstream infections[J]. Int J Antimicrob Agents, 2021, 57(5):106329. doi:10.1016/j.ijantimicag.2021.106329.
|
[5] |
ZHANG W, LIN Y, ZONG Y, et al. Staphylococcus aureus infection initiates hypoxia-mediated transforming growth factor-β1 upregulation to trigger osteomyelitis[J]. mSystems, 2022, 7(4):e0038022. doi:10.1128/msystems.00380-22.
|
[6] |
ASPARUHOVA M B, CABALLÉ-SERRANO J, BUSER D, et al. Bone-conditioned medium contributes to initiation and progression of osteogenesis by exhibiting synergistic TGF-β1/BMP-2 activity[J]. Int J Oral Sci, 2018, 10(2):20. doi:10.1038/s41368-018-0021-2.
|
[7] |
SILVA V, MIRANDA C, ANTÃO H S, et al. Therapeutic potential of dalbavancin in a rat model of methicillin-resistant Staphylococcus aureus (MRSA)-osteomyelitis[J]. Int J Antimicrob Agents, 2020, 56(1):106021. doi:10.1016/j.ijantimicag.2020.106021.
|
[8] |
龙波, 于荣国, 王凌, 等. 利奈唑胺在大鼠血、脑组织和脑脊液中的药代动力学研究[J]. 中华临床医师杂志(电子版), 2013, 7(1):119-121.
|
|
LONG B, YU R G, WANG L, et al. Pharmacokinetics of Linezolid in rat plasma,brain tissue and cerebrospinai fluid[J]. Chin J Clinicians (Electronic Edition), 2013, 7(1):119-121. doi:10.3877/cma.j.issn.1674-0785.2013.01.043.
|
[9] |
郭剑栋, 封江标, 陈芹, 等. 抑制CX3C趋化因子受体1对细菌性骨髓炎大鼠骨缺损的改善作用[J]. 中华医院感染学杂志, 2020, 30(14):2129-2133.
|
|
GUO J D, FENG J B, CHEN Q, et al. Effect of inhibiting CX3C chemokine receptor 1 on improvement of bone defect of rats with bacterial osteomyelitis[J]. Chin J Nosocomiol, 2020, 30(14):2129-2133. doi:10.11816/cn.ni.2020-191967.
|
[10] |
鲁嘉良, 张永兴, 徐鹏, 等. 大鼠创伤性骨髓炎后骨骼肌过度纤维化及其与转化生长因子-β的相关性[J]. 中华创伤杂志, 2016, 32(7):645-649.
|
|
LU J L, ZHANG Y X, XU P, et al. Excessive skeletal muscle fibrosis and its correlation of tumor growth factor-β in rats with traumatic osteomyelitis[J]. Chin J Traumatol, 2016, 32(7):645-649. doi:10.3760/cma.j.issn.1001-8050.2016.07.014.
|
[11] |
PUTNAM N E, FULBRIGHT L E, CURRY J M, et al. MyD88 and IL-1R signaling drive antibacterial immunity and osteoclast-driven bone loss during Staphylococcus aureus osteomyelitis[J]. PLoS Pathog, 2019, 15(4):e1007744. doi:10.1371/journal.ppat.1007744.
|
[12] |
MILLER L S, FOWLER V G, SHUKLA S K, et al. Development of a vaccine against Staphylococcus aureus invasive infections:Evidence based on human immunity, genetics and bacterial evasion mechanisms[J]. FEMS Microbiol Rev, 2020, 44(1):123-153. doi:10.1093/femsre/fuz030.
|
[13] |
夏晴, 吕梅, 李庆蓉, 等. 利奈唑胺耐药肠球菌感染危险因素及耐药机制分析[J]. 中国感染与化疗杂志, 2022, 22(1):23-29.
|
|
XIA Q, LYU M, LI Q R, et al. Risk factors for and the mechanism underlying linezolid-resistant Enterococcus infection[J]. Chin J Infect Chemother, 2022, 22(1):23-29. doi:10.16718/j.1009-7708.2022.01.005.
|
[14] |
OVCHINNIKOV E N, DYURYAGINA O V, STOGOV M V, et al. Model of osteomyelitis in rats[J]. Bull Exp Biol Med, 2022, 173(3):394-397. doi:10.1007/s10517-022-05556-6.
|
[15] |
ROUX K M, COBB L H, SEITZ M A, et al. Innovations in osteomyelitis research:A review of animal models[J]. Animal Model Exp Med, 2021, 4(1):59-70. doi:10.1002/ame2.12149.
|
[16] |
MAO Q F, SHANG-GUAN Z F, CHEN H L, et al. Immunoregulatory role of IL-2/STAT5/CD4+CD25+Foxp3 Treg pathway in the pathogenesis of chronic osteomyelitis[J]. Ann Transl Med, 2019, 7(16):384. doi:10.21037/atm.2019.07.45.
|
[17] |
DERYNCK R, BUDI E H. Specificity,versatility,and control of TGF-β family signaling[J]. Sci Signal, 2019, 12(570):eaav5183. doi:10.1126/scisignal.aav5183.
|
[18] |
SONG I W, NAGAMANI S C, NGUYEN D, et al. Targeting TGF-β for treatment of osteogenesis imperfecta[J]. J Clin Invest, 2022, 132(7):e152571. doi:10.1172/JCI152571.
|
[19] |
VERMA A, ARTHAM S, SOMANATH P R. ALK-1 to ALK-5 ratio dictated by the Akt1-β-catenin pathway regulates TGFβ-induced endothelial-to-mesenchymal transition[J]. Gene, 2021, 768:145293. doi:10.1016/j.gene.2020.145293.
|
[20] |
SUGII H, ALBOUGHA M S, ADACHI O, et al. Activin A promotes osteoblastic differentiation of human preosteoblasts through the ALK1-Smad1/5/9 pathway[J]. Int J Mol Sci, 2021, 22(24):13491. doi:10.3390/ijms222413491.
|
[21] |
HEUBEL B, NOHE A. The role of BMP signaling in osteoclast regulation[J]. J Dev Biol, 2021, 9(3):24. doi:10.3390/jdb9030024.
|
[22] |
CHIEN S Y, TSAI C H, LIU S C, et al. Noggin inhibits IL-1β and BMP-2 expression,and attenuates cartilage degeneration and subchondral bone destruction in experimental osteoarthritisp[J]. Cells, 2020, 9(4):927. doi:10.3390/cells9040927.
|