[1] |
STEVENS J P, LAW A, GIANNAKOULIS J. Acute respiratory distress syndrome[J]. JAMA, 2018, 319(7):732. doi: 10.1001/jama.2018.0483.
|
[2] |
SHAH J, RANA S S. Acute respiratory distress syndrome in acute pancreatitis[J]. Indian J Gastroenterol, 2020, 39(2):123-132. doi: 10.1007/s12664-020-01016-z.
|
[3] |
MATTHAY M A, ALDRICH J M, GOTTS J E. Treatment for severe acute respiratory distress syndrome from COVID-19[J]. Lancet Respir Med, 2020, 8(5):433-434. doi: 10.1016/S2213-2600(20)30127-2.
|
[4] |
SHIMBORI C, BELLAYE P S, XIA J, et al. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis[J]. J Pathol, 2016, 240(2):197-210. doi: 10.1002/path.4768.
|
[5] |
NITHIANANTHAN S, CRAWFORD A, KNOCK J C, et al. Physiological fluid flow moderates fibroblast responses to TGF-β1[J]. J Cell Biochem, 2017, 118(4):878-890. doi: 10.1002/jcb.25767.
|
[6] |
HU X, HUANG X. Alleviation of inflammatory response of pulmonary fibrosis in acute respiratory distress syndrome by puerarin via transforming growth factor(TGF-β1)[J]. Med Sci Monit, 2019, 25:6523-6531. doi: 10.12659/MSM.915570.
|
[7] |
PRICE N L, MIGUEL V, DING W, et al. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis[J]. JCI Insight, 2019, 4(22):e131102. doi: 10.1172/jci.insight.131102.
|
[8] |
CHEN Z, DING H S, GUO X, et al. MiR-33 promotes myocardial fibrosis by inhibiting MMP16 and stimulating p38 MAPK signaling[J]. Oncotarget, 2018, 9(31):22047-22057. doi: 10.18632/oncotarget.25173.
|
[9] |
NISHIGA M, HORIE T, KUWABARA Y, et al. MicroRNA-33 controls adaptive fibrotic response in the remodeling heart by preserving lipid raft cholesterol[J]. Circ Res, 2017, 120(5):835-847. doi: 10.1161/CIRCRESAHA.116.309528.
|
[10] |
马绍磊, 王宇杰, 左祥荣, 等. 内毒素诱导ARDS对大鼠右心功能的影响[J]. 中华危重病急救医学, 2018, 30(3):204-208.
|
|
MA S L, WANG Y J, ZUO X R, et al. Effects of acute respiratory distress syndrome induced by endotoxin on the right ventricular function in rats[J]. Chin Crit Care Med, 2018, 30(3):204-208. doi: 10.3760/cma.j.issn.2095-4352.2018.03.003.
|
[11] |
GAO J, CHU W, DUAN J, et al. Six-month outcomes of post-ARDS pulmonary fibrosis in patients with H1N1 pneumonia[J]. Front Mol Biosci, 2021, 8:640763. doi: 10.3389/fmolb.2021.640763.
|
[12] |
HUPPERT L A, MATTHAY M A, WARE L B. Pathogenesis of acute respiratory distress syndrome[J]. Semin Respir Crit Care Med, 2019, 40(1):31-39. doi: 10.1055/s-0039-1683996.
|
[13] |
SANCHEZ M L. Mechanical ventilation in patients subjected to extracorporeal membrane oxygenation(ECMO)[J]. Med Intensiva, 2017, 41(8):491-496. doi: 10.1016/j.medin.2016.12.007.
|
[14] |
赵振宇. miR-33表达与炎症反应的关系[J]. 医学信息, 2020, 33(2):73-75.
|
|
ZHAO Z Y. Relationship between miR-33 expression and inflammatory response[J]. Medical Information, 2020, 33(2):73-75. doi: 10.3969/j.issn.1006-1959.2020.02.020.
|
[15] |
秦永亭, 张晓蕾, 方小霞, 等. miR-33-5p对糖尿病肾脏疾病大鼠肾纤维化影响机制的研究[J]. 中国糖尿病杂志, 2021, 29(5):378-383.
|
|
QIN Y T, ZHANG X L, FANG X X, et al. Effect and mechanism of miR-33-5p on renal fibrosis in diabetic kidney disease rats[J]. Chinese Journal of Diabetes, 2021, 29(5):378-383. doi: 10.3969/j.issn.1006-6187.2021.05.011.
|
[16] |
TOMITA K, TERATANI T, SUZUKI T, et al. Free cholesterol accumulation in hepatic stellate cells:mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice[J]. Hepatology, 2014, 59(1):154-169. doi: 10.1002/hep.26604.
|
[17] |
YU B, LI W, AL F, et al. MicroRNA-33a deficiency inhibits proliferation and fibrosis through inactivation of TGF-β/Smad pathway in human cardiac fibroblasts[J]. Pharmazie, 2017, 72(8):456-460. doi: 10.1691/ph.2017.7561.
|
[18] |
KIM K K, SHEPPARD D, CHAPMAN H A. TGF-β1 signaling and tissue fibrosis[J]. Cold Spring Harb Perspect Biol, 2018, 10(4):a022293. doi: 10.1101/cshperspect.a022293.
|
[19] |
陈希琦, 张晓双, 周永坤, 等. TGF-β1/Smads信号通路在纤维化疾病中的研究进展[J]. 中国中西医结合外科杂志, 2021, 27(2):351-354.
|
|
CHEN X Q, ZHANG X S, ZHOU Y K, et al. Research progress of TGF-β1/Smads signaling pathway in fibrotic diseases[J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine, 2021, 27(2):351-354. doi: 10.3969/j.issn.1007-6948.2021.02.037.
|
[20] |
WANG L, LIU J, XIE W, et al. miR-425 reduction causes aberrant proliferation and collagen synthesis through modulating TGF-β/Smad signaling in acute respiratory distress syndrome[J]. Int J Clin Exp Pathol, 2019, 12(7):2604-2612.
|
[21] |
CAO Y, LIU Y, PING F, et al. miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways[J]. Lab Invest, 2018, 98(3):339-359. doi: 10.1038/labinvest.2017.123.
|
[22] |
MU E, DING R, AN X, et al. Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-β/Smad signaling pathway[J]. Thromb Res, 2012, 129(4):479-485. doi: 10.1016/j.thromres.2011.10.003.
|
[23] |
ZHANG Y Q, LIU Y J, MAO Y F, et al. Resveratrol ameliorates lipopolysaccharide-induced epithelial mesenchymal transition and pulmonary fibrosis through suppression of oxidative stress and transforming growth factor-β1 signaling[J]. Clin Nutr, 2015, 34(4):752-760. doi: 10.1016/j.clnu.2014.08.014.
|