[1] |
ZENG X, HUO X, XU X, et al. E-waste lead exposure and children's health in China[J]. Sci Total Environ, 2020, 734:139286. doi:10.1016/j.scitotenv.2020.139286.
|
[2] |
梁艳, 肖华, 孙建岭, 等. 警惕儿童的“隐形杀手”[J]. 中国工业医学杂志, 2021, 34(3):288.
|
|
LANG Y, XIAO H, SUN J L, et al. Watch out for 'invisible killers' of children[J]. Chin J Industrial Med, 2021, 34(3):288. doi:10.13631/j.cnki.zggyyx.2021.03.033.
|
[3] |
DÓREA J G. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children[J]. Environ Res, 2019, 177:108641. doi:10.1016/j.envres.2019.108641.
|
[4] |
TENA A, PERU E, MARTINETTI L E, et al. Long-term consequences of early postnatal lead exposure on hippocampal synaptic activity in adult mice[J]. Brain Behav, 2019, 9(8):e01307. doi:10.1002/brb3.1307.
|
[5] |
CHIBOWSKA K, KORBECKI J, GUTOWSKA I, et al. Pre- and neonatal exposure to lead(Pb) Induces neuroinflammation in the forebrain cortex,hippocampus and cerebellum of rat pups[J]. Int J Mol Sci, 2020, 21(3):1083. doi:10.3390/ijms21031083.
|
[6] |
ZENG X, ZENG Z, WANG Q, et al. Alterations of the gut microbiota and metabolomics in children with e-waste lead exposure[J]. J Hazard Mater, 2022, 434:128842. doi:10.1016/j.jhazmat.2022.128842.
|
[7] |
李瑞盈, 鄢明辉, 游春苹. 脑-肠轴与精神疾病肠道微生物的研究进展[J]. 食品工业科技, 2021, 42(18):427-434.
|
|
LI R Y, YAN M H, YOU C P. Advances in the study of brain-gut axis and intestinal microorganisms in neuropsychiatric diseases[J]. Science and Technology of Food Industry, 2021, 42(18):427-434. doi:10.13386/j.issn1002-0306.2020080250.
|
[8] |
徐锘, 吴晓俊. 黄芪皂苷对神经系统疾病的药理作用研究进展[J]. 中国中药杂志, 2021, 46(18):4674-4682.
|
|
XU N, WU X J. Research advance of pharmacological effects ofastragalosides on nervous system diseases[J]. Chin J Chin Mater Med, 2021, 46(18):4674-4682. doi:10.19540/j.cnki.cjcmm.20210610.704.
|
[9] |
蔚立涛, 赵秉宏, 李鑫, 等. 蒙古黄芪总皂苷对铅染毒大鼠学习记忆损伤的保护作用[J]. 包头医学院学报, 2020, 36(6):52-55.
|
|
WEI L T, ZHAO B H, LI X, et al. Protective effect of Mongolian Astra agalus saponins on learning and memory impairment in rats exposed to lead[J]. Journal of Baotou Medical College, 2020, 36(6):52-55. doi:10.16833/j.cnki.jbmc.2020.06.021.
|
[10] |
田雨, 丁艳平, 邵宝平, 等. 黄芪等药食同源类中药作为功能性食品与肠道菌群的相互作用[J]. 中国中药杂志, 2020, 45(11):2486-2492.
|
|
TIAN Y, DING Y P, SHAO B P, et al. Interaction between homologous functional food Astragali Radix and intestinal flora[J]. Chin J Chin Mater Med, 2020, 45(11):2486-2492. doi:10.19540/j.cnki.cjcmm.20200119.401.
|
[11] |
ROGNES T, FLOURI T, NICHOLS B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4:e2584. doi:10.7717/peerj.2584.
|
[12] |
EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998. doi:10.1038/nmeth.2604.
|
[13] |
ANDREOLLO N A, SANTOS E F, ARAÚJO M R, et al. Rat's age versus human's age:what is the relationship?[J]. Arq Bras Cir Dig, 2012, 25(1):49-51. doi:10.1590/s0102-67202012000100011.
|
[14] |
朱嘉伟, 许永杰, 李韵婷, 等. 铅暴露引起小鼠学习记忆改变与肠道菌群紊乱的相关性研究[J]. 中华劳动卫生职业病杂志, 2022, 40(2):83-89.
|
|
ZHU J W, XU Y J, LI Y T, et al. Relationships between lead-induced learning and memory impairments and gut microbiota disturbancein mice[J]. Chin J Industrial Hygiene Occupational Dis, 2022, 40(2):83-89. doi:10.3760/cma.j.cn121094-20210121-00041.
|
[15] |
KLOTZ K, GÖEN T. Human biomonitoring of lead exposure[J]. Met Ions Life Sci, 2017, 17:99-121. doi:10.1515/9783110434330-006.
|
[16] |
BOSKABADY M, MAREFATI N, FARKHONDEH T, et al. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms,a review[J]. Environ Int, 2018, 120:404-420. doi:10.1016/j.envint.2018.08.013.
|
[17] |
SU P, WANG D, CAO Z, et al. The role of NLRP3 in lead-induced neuroinflammation and possible underlying mechanism[J]. Environ Pollut, 2021, 287:117520. doi:10.1016/j.envpol.2021.117520.
|
[18] |
ZHAI Q, QU D, FENG S, et al. Oral Supplementation of lead-intolerant intestinal microbes protects against lead (Pb) toxicity in mice[J]. Front Microbiol, 2020, 10:3161. doi:10.3389/fmicb.2019.03161.
|
[19] |
黄曦瑶, 汪惠丽. 益生菌摄入对铅暴露大鼠社会行为的影响[J]. 合肥工业大学学报(自然科学版), 2020, 43(6):839-843.
|
|
HUANG X Y, WANG H L. Effect of probiotics on social behavior of lead-exposed rats[J]. Journal of Hefei University of Technology(Natural Science), 2020, 43(6):839-843.
|
[20] |
HENKE M T, KENNY D J, CASSILLY C D, et al. Ruminococcus gnavus,a member of the human gut microbiome associated with Crohn's disease,produces an inflammatory polysaccharide[J]. Proc Natl Acad Sci USA, 2019, 116(26):12672-12677. doi:10.1073/pnas.1904099116.
|
[21] |
ZHU H Z, LIANG Y D, MA Q Y, et al. Xiaoyaosan improves depressive-like behavior in rats with chronic immobilization stress through modulation of the gut microbiota[J]. Biomed Pharmacother, 2019, 112:108621. doi:10.1016/j.biopha.2019.108621.
|
[22] |
LI Q, CUI Y, XU B, et al. Main active components of Jiawei Gegen Qinlian decoction protects against ulcerative colitis under different dietary environments in a gut microbiota-dependent manner[J]. Pharmacol Res, 2021, 170:105694. doi:10.1016/j.phrs.2021.105694.
|
[23] |
SUN D, BAI R, ZHOU W, et al. Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae[J]. Gut, 2021, 70(4):666-676. doi:10.1136/gutjnl-2019-320135.
|