[1] |
CENTE M, MATYASOVA K, CSICSATKOVA N, et al. Traumatic microRNAs:deconvolving the signal after severe traumatic brain injury[J]. Cell Mol Neurobiol, 2023, 43(3):1061-1075. doi:10.1007/s10571-022-01254-z.
|
[2] |
ZHANG C, CHEN S. Role of TREM2 in the development of neurodegenerative diseases after traumatic brain injury[J]. Mol Neurobiol, 2023, 60(1):342-354. doi:10.1007/s12035-022-03094-w.
|
[3] |
MI L, MIN X, SHI M, et al. Neutrophil extracellular traps aggravate neuronal endoplasmic reticulum stress and apoptosis via TLR9 after traumatic brain injury[J]. Cell Death Dis, 2023, 14(6):374-385. doi:10.1038/s41419-023-05898-7.
|
[4] |
李沅洋, 周湘忠, 雷向红, 等. 黄芪甲苷调控线粒体自噬减轻5-Fu诱导老龄大鼠心肌毒性的实验研究[J]. 天津医药, 2021, 49(4):378-384.
|
|
LI Y Y, ZHOU X Z, LEI X H, et al. The experimental study on astragaloside Ⅳ regulating mitochondrial autophagy to reduce myocardial toxicity induced by 5-Fu in aging rats[J]. Tianjin Med J, 2021, 49(4):378-384. doi:10.11958/20202229.
|
[5] |
WANG L, LIU C, WANG L, et al. Astragaloside IV mitigates cerebral ischaemia-reperfusion injury via inhibition of P62/Keap1/Nrf2 pathway-mediated ferroptosis[J]. Eur J Pharmacol, 2023, 944:175516. doi:10.1016/j.ejphar.2023.175516.
|
[6] |
LAGUNAS-RANGEL F A.Fas (CD95)/FasL (CD178) system during ageing[J]. Cell Biol Int, 2023, 47(8):1295-1313. doi:10.1002/cbin.12032.
|
[7] |
RUAN S, ZHAI L, WU S, et al. SCFAs promote intestinal double-negative T cells to regulate the inflammatory response mediated by NLRP3 inflammasome[J]. Aging (Albany NY), 2021, 13(17):21470-21482. doi:10.18632/aging.203487.
|
[8] |
杨琪, 安鹏飞, 王瑞辉, 等. 不同时期电针对创伤性颅脑损伤大鼠脑组织Fas/FasL表达的影响[J]. 针刺研究, 2020, 45(9):714-719.
|
|
YANG Q, AN P F, WANG R H, et al. Effect of electroacupuncture at different stages on the expression of Fas and FasL in brain tissue of rats with traumatic brain injury[J]. Acupuncture Research, 2020, 45(9):714-719. doi:10.13702/j.1000-0607.190863.
|
[9] |
张怡, 张彐宁, 周晓红, 等. 黄芪甲苷缓解大脑中动脉阻塞/再灌注大鼠脑组织损伤的作用及机制[J]. 时珍国医国药, 2021, 32(11):2636-2639.
|
|
ZHANG Y, Zhang J N, ZHOU X H, et al. Effect and mechanism of astragaloside on brain tissue injury induced by middle cerebral artery occlusion/reperfusion in rats[J]. Lishizhen Medicine and Materia Medica Research, 2021, 32(11):2636-2639. doi:10.3969/j.issn.1008-0805.2021.11.18.
|
[10] |
邹婷婷, 马莉, 潘文静, 等. 重型颅脑创伤并发颅内感染危险因素分析及列线图预测模型构建[J]. 中国现代神经疾病杂志, 2023, 23(6):496-502.
|
|
ZOU T T, MA L, PAN W J, et al. Analysis of risk factors of secondary intracranial infection in patients with severe traumatic brain injury and construction of a nomogram prediction model[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2023, 23(6):496-502. doi:10.3969/j.issn.1672-6731.2023.06.005.
|
[11] |
SHRESTHA A, PAUDEL N, ADHIKARI G, et al. Traumatic brain injury among patients admitted in neurosurgical unit in a tertiary care centre:a descriptive cross-sectional study[J]. JNMA J Nepal Med Assoc, 2023, 61(262):514-518. doi:10.31729/jnma.8197.
|
[12] |
KIM M S, KIM Y H, KIM M S, et al. Efficacy and safety of early anti-inflammatory drug therapy for secondary injury in traumatic brain injury[J]. World Neurosurg, 2023, 172(1):646-654. doi:0.1016/j.wneu.2023.01.110.
|
[13] |
TANG X, LI X, ZHANG D, et al. Astragaloside-IV alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2[J]. Bioengineered, 2022, 13(4):8240-8254. doi:10.1080/21655979.2022.2049471.
|
[14] |
ZHANG D, LI Z, GAO Y, et al. Astragaloside IV improves renal function and alleviates renal damage and inflammation in rats with chronic glomerulonephritis[J]. Turk J Biol, 2022, 47(1):61-73. doi:10.55730/1300-0152.2641.
|
[15] |
YIN F, ZHOU H F, FANG Y C, et al. Astragaloside IV alleviates ischemia reperfusion-induced apoptosis by inhibiting the activation of key factors in death receptor pathway and mitochondrial pathway[J]. J Ethnopharmacolo, 2020, 248:112319. doi:10.1016/j.jep.2019.112319.
|
[16] |
WANG Y L, CHIO C C, KUO S C, et al. Exercise rehabilitation and/or Astragaloside attenuate amyloid-beta pathology by reversing BDNF/TrkB signaling deficits and mitochondrial dysfunction[J]. Mol Neurobiol, 2022, 59(5):3091-3109. doi:10.1007/s12035-022-02728-3.
|
[17] |
ABOU SHOUSHA S, BAHEEG S, GHONEIM H, et al. The effect of Fas/FasL pathway blocking on apoptosis and stemness within breast cancer tumor microenvironment (preclinical study)[J]. Breast Dis, 2023, 42(1):163-176. doi:10.3233/BD-220077.
|
[18] |
PIETRZAK B A, WNUK A, PRZEPIÓRSKA K, et al. Posttreatment with ospemifene attenuates hypoxia- and ischemia-induced apoptosis in primary neuronal cells via selective modulation of estrogen receptors[J]. Neurotox Res, 2023, 41(4):362-379. doi:10.1007/s12640-023-00644-5.
|
[19] |
SUN H, YANG Y, GU M, et al. The role of Fas-FasL-FADD signaling pathway in arsenic-mediated neuronal apoptosis in vivo and in vitro[J]. Toxicol Lett, 2022, 356(1):143-150. doi:10.1016/j.toxlet.2021.11.012.
|
[20] |
WEN S, WANG L, ZOU H, et al. Puerarin attenuates cadmium-induced neuronal injury via stimulating cadmium excretion, inhibiting oxidative stress and apoptosis[J]. Biomolecules, 2021, 11(7):978. doi:10.3390/biom11070978.
|