[1] |
中华中医药学会风湿病分会. 骨关节炎病证结合诊疗指南[J]. 中华中医药杂志, 2021, 36(2):929-933.
|
|
Branch Committee of Rheumatology of China Association of Chinese Medicine. Guidelines for treatment of osteoarthritis basing on the integration of diagnosis and syndrome differentiation[J]. American Journal of Chinese Medicine, 2021, 36(2):929-933.
|
[2] |
HUANG Z, MAO X, CHEN J, et al. Sinomenine hydrochloride injection for knee osteoarthritis: a protocol for systematic review and meta-analysis[J]. Medicine (Baltimore), 2022, 101(2):1-12. doi:10.1097/MD.0000000000028503.
|
[3] |
ZHOU Y, WANG W, TIAN K, et al. Efficacy and safety of Biqi capsule in the treatment of knee osteoarthritis:a protocol of a randomized controlled trial[J]. Medicine(Baltimore), 2021, 100(16):e25476. doi:10.1097/MD.0000000000025476.
|
[4] |
ZHAO G, TONG Y, LUAN F, et al. Alpinetin:a review of its pharmacology and pharmacokinetics[J]. Front Pharmacol, 2022, 13(1):814370-814381. doi:10.3389/fphar.2022.814370.
|
[5] |
戴华, 林建珍, 王彦蕊. 山姜素对冠心病大鼠心功能、血脂和血管内皮功能的影响[J]. 中国临床药理学杂志, 2021, 37(20):2813-2817.
|
|
DAI H, LIN J Z, WANG Y R. Effect of alpinia on heart function,blood lipid and vascular endothelial function in rats with coronary heart disease[J]. Chin J Clin Pharmacol, 2021, 37(20):2813-2817. doi:10.13699/j.cnki.1001-6821.2021.20.024.
|
[6] |
ZHU Z, HU R, LI J, et al. Alpinetin exerts anti-inflammatory,anti-oxidative and anti-angiogenic effects through activating the Nrf2 pathway and inhibiting NLRP3 pathway in carbon tetrachloride-induced liver fibrosis[J]. Int Immunopharmacol, 2021, 96(1):1-11. doi:10.1016/j.intimp.2021.107660.
|
[7] |
GAO Y, WANG S, HE L, et al. Alpinetin protects chondrocytes and exhibits anti-inflammatory effects via the NF-κB/ERK pathway for alleviating osteoarthritis[J]. Inflammation, 2020, 43(5):1742-1750. doi:10.1007/s10753-020-01248-3.
|
[8] |
QIAN J J, XU Q, XU W M, et al. Expression of VEGF-A signaling pathway in cartilage of ACLT-induced osteoarthritis mouse model[J]. J Orthop Surg Res, 2021, 16(1):379-392. doi:10.1186/s13018-021-02528-w.
|
[9] |
OBINATA H, HLA T. Sphingosine 1-phosphate and inflammation[J]. Int Immunol, 2019, 31(9):617-625. doi:10.1093/intimm/dxz037.
|
[10] |
PULKOSKI-GROSS M J, OBEID L M. Molecular mechanisms of regulation of sphingosine kinase 1[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(11):1413-1422. doi:10.1016/j.bbalip.2018.08.015.
|
[11] |
WANG Y, WU H, DENG R, et al. Geniposide downregulates the VEGF/SphK1/S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro[J]. Phytother Res, 2021, 35(8):4347-4362. doi:10.1002/ptr.7130.
|
[12] |
万超, 朱小虎, 程宇核, 等. 内热针疗法对膝骨关节炎大鼠软骨细胞凋亡及Caspase-3和Caspase-9表达的影响[J]. 中国针灸, 2019, 39(4):409-416.
|
|
WAN C, ZHU X H, CHENG Y H, et al. Effects of inner-heating acupuncture on apoptosis of chondrocytes and expression of Caspase-3 and Caspase-9 in rats with knee osteoarthritis[J]. Chinese Acupuncture & Moxibustion, 2019, 39(4):409-416. doi:10.13703/j.0255-2930.2019.04.017.
|
[13] |
ZHAO X, MENG F, HU S, et al. The synovium attenuates cartilage degeneration in KOA through activation of the Smad2/3-Runx1 cascade and chondrogenesis-related miRNAs[J]. Mol Ther Nucleic Acids, 2020, 22(1):832-845. doi:10.1016/j.omtn.2020.10.004.
|
[14] |
DENG B, CHEN C, GONG X, et al. Chondromodulin‑I expression and correlation with angiogenesis in human osteoarthritic cartilage[J]. Mol Med Rep, 2017, 16(2):2142-2148. doi:10.3892/mmr.2017.6775.
|
[15] |
CHEN Y, JIANG W, YONG H, et al. Macrophages in osteoarthritis: pathophysiology and therapeutics[J]. Am J Transl Res, 2020, 12(1):261-268.
|
[16] |
FENG Y, HU S, LIU L, et al. HMGB1 contributes to osteoarthritis of temporomandibular joint by inducing synovial angiogenesis[J]. J Oral Rehabil, 2021, 48(5):551-559. doi:10.1111/joor.13129.
|
[17] |
代万武, 黄祖权, 张波, 等. 山姜素对脂多糖诱导的软骨细胞损伤的保护作用研究[J]. 天津医药, 2020, 48(12):1137-1141.
|
|
DAI W W, HUANG Z Q, ZHANG B, et al. The protective effect of alpinetin on chondrocyte damage induced by lipopolysaccharide[J]. Tianjin Med J, 2020, 48(12):1137-1141. doi:10.11958/20201496.
|
[18] |
ERUSAPPAN T, KONDAPURAM S K, EKAMBARAM S P, et al. Investigation of Alpinia calcarata constituent interactions with molecular targets of rheumatoid arthritis:docking,molecular dynamics,and network approach[J]. J Mol Model, 2021, 27(1):14-26. doi:10.1007/s00894-020-04651-7.
|
[19] |
KO J Y, LEE M S, LIAN W S, et al. MicroRNA-29a counteracts synovitis in knee osteoarthritis pathogenesis by targeting VEGF[J]. Sci Rep, 2017, 7(1):3584-3597. doi:10.1038/s41598-017-03616-w.
|
[20] |
YAMAGUCHI K, SUDO H, IMAI K. Vascular endothelial growth factor signaling in VE-cadherin expression and tube-like formation by rheumatoid arthritic synovial fibroblast-like cells[J]. Biochem Biophys Res Commun, 2019, 508(2):405-409. doi:10.1016/j.bbrc.2018.11.116.
|
[21] |
GURGUL-CONVEY E. To be or not to be:the divergent action and metabolism of sphingosine-1 phosphate in pancreatic beta-cells in response to cytokines and fatty acids[J]. Int J Mol Sci, 2022, 23(3):1-10. doi:10.3390/ijms23031638.
|
[22] |
CHERIFI C, LATOURTE A, VETTORAZZI S, et al. Inhibition of sphingosine 1-phosphate protects mice against chondrocyte catabolism and osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(9):1335-1345. doi:10.1016/j.joca.2021.06.001.
|
[23] |
GAO Z, WANG H, XIAO F J, et al. SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells[J]. Int J Biochem Cell Biol, 2016, 74(1):152-160. doi:10.1016/j.biocel.2016.02.018.
|
[24] |
HUANG C C, TSENG T T, LIU S C, et al. S1P increases VEGF production in osteoblasts and facilitates endothelial progenitor Cell angiogenesis by inhibiting miR-16-5p expression via the c-Src/FAK signaling pathway in rheumatoid arthritis[J]. Cells, 2021, 10(8):1-12. doi:10.3390/cells10082168.
|