天津医药 ›› 2024, Vol. 52 ›› Issue (8): 882-887.doi: 10.11958/20231571
收稿日期:
2023-10-13
修回日期:
2023-12-25
出版日期:
2024-08-15
发布日期:
2024-08-16
通讯作者:
E-mail:作者简介:
马良(1984),男,主治医师,主要从事糖尿病肾病及慢性肾脏病机制方面研究。E-mail:基金资助:
MA Liang1(), HU Liying2, SHI Yu2, LONG Gang1,△(
)
Received:
2023-10-13
Revised:
2023-12-25
Published:
2024-08-15
Online:
2024-08-16
Contact:
E-mail:马良, 胡立影, 石羽, 龙刚. 光学相干断层扫描血管成像技术在慢性肾脏病临床评估中的应用进展[J]. 天津医药, 2024, 52(8): 882-887.
MA Liang, HU Liying, SHI Yu, LONG Gang. Application of optical coherence tomography angiography in clinical evaluation of chronic kidney disease[J]. Tianjin Medical Journal, 2024, 52(8): 882-887.
摘要:
慢性肾脏病(CKD)是常见的慢性疾病。视网膜和肾脏具有同源性。糖尿病视网膜病变、视网膜神经血管损伤均揭示了视网膜和肾脏存在共同的病理生理特征。光学相干断层扫描血管成像技术(OCTA)可用接近组织学的分辨率检测脉络膜视网膜微循环。由于微血管结构和功能的改变可促进高血压、糖尿病、CKD及相关心血管疾病(CVD)的发展。OCTA对CKD患者眼底神经微血管的检查有助于识别高危人群,评估CKD病情的进展,为CVD风险预测提供了新的视角;其与深度学习的结合,将会进一步拓展该方面研究。
中图分类号:
[1] | WANG L, XU X, ZHANG M, et al. Prevalence of chronic kidney disease in China:Results from the Sixth China Chronic Disease and Risk Factor Surveillance[J]. JAMA Intern Med, 2023, 183(4):298-310. doi:10.1001/jamainternmed.2022.6817. |
[2] | 上海市肾内科临床质量控制中心专家组. 慢性肾脏病早期筛查,诊断及防治指南(2022年版)[J]. 中华肾脏病杂志, 2022, 38(5):453-464. |
Expert Group on Kidney Clinical Quality Control Center in Shanghai. Guidelines for early screening,diagnosis,prevention and treatment of chronic kidney disease(2022 Edition)[J]. Chinese Journal of Nephrology, 2022, 38(5):453-464. doi:10.3760/cma.j.cn441217-20210819-00067. | |
[3] | FURSOVA A Z, DERBENEVA A S, VASILYEVA M V, et al. Structural and microvascular changes in the retina and choroid in patients with chronic kidney disease[J]. Vestn Oftalmol, 2021, 137(6):99-108. doi:10.17116/oftalma202113706199. |
[4] | FURSOVA A Z, DERBENEVA A S, VASILYEVA M A, et al. Development,clinical manifestations and diagnosis of retinal changes in chronic kidney disease[J]. Vestn Oftalmol, 2021, 137(1):107-114. doi:10.17116/oftalma2021137011107. |
[5] | HUANG Y, YUAN Y, SETH I, et al. Optic nerve head capillary network quantified by optical coherence tomography angiography and decline of renal function in type 2 diabetes:a three-year prospective study[J]. Am J Ophthalmol, 2023, 253:96-105. doi:10.1016/j.ajo.2023.04.003. |
[6] | SPAIDE R F, FUJIMOTO J G, WAHEED N K, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64:1-55. doi:10.1016/j.preteyeres.2017.11.003. |
[7] | WANG A, QI W, GAO T, et al. Molecular contrast optical coherence tomography and its applications in medicine[J]. Int J Mol Sci, 2022, 23(6):3038. doi:10.3390/ijms23063038. |
[8] | FARRAH T E, DHILLON B, KEANE P A, et al. The eye,the kidney,and cardiovascular disease: old concepts, better tools, and new horizons[J]. Kidney Int, 2020, 98(2):323-342. doi:10.1016/j.kint.2020.01.039. |
[9] | LI X, XIE J, ZHANG L, et al. Identifying microvascular and neural parameters related to the severity of diabetic retinopathy using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2020, 61(5):39. doi:10.1167/iovs.61.5.39. |
[10] | WU I W, SUN C C, LEE C C, et al. Retinal neurovascular changes in chronic kidney disease[J]. Acta Ophthalmol, 2020, 98(7):e848-e855. doi:10.1111/aos.14395. |
[11] | DOUGLAS V P, DOUGLAS K, TORUN N. Optical coherence tomography angiography in neuro-ophthalmology[J]. Curr Opin Ophthalmol, 2023, 34(4):354-360. doi:10.1097/ICU.0000000000000955. |
[12] | ELTANAHY A M, FRANCO C, JEYARAJ P, et al. Ex vivo ocular perfusion model to study vascular physiology in the mouse eye[J]. Exp Eye Res, 2023, 233:109543. doi:10.1016/j.exer.2023.109543. |
[13] | MURALI A, KRISHNAKUMAR S, SUBRAMANIAN A, et al. Bruch's membrane pathology:a mechanistic perspective[J]. Eur J Ophthalmol, 2020, 30(6):1195-1206. doi:10.1177/1120672120919337. |
[14] | CICINELLI M V, RITTER M, TAUSIF H, et al. Characterization of choriocapillaris and choroidal abnormalities in Alport Syndrome[J]. Transl Vis Sci Technol, 2022, 11(3):23. doi:10.1167/tvst.11.3.23. |
[15] | ZHU V, HUANG T, WANG D, et al. Ocular manifestations of the genetic causes of focal and segmental glomerulosclerosis[J]. Pediatr Nephrol, 2023. doi:10.1007/s00467-023-06073-y. [Epub ahead of print]. |
[16] | OSHITARI T. Advanced glycation end-products and diabetic neuropathy of the retina[J]. Int J Mol Sci, 2023, 24(3):2927. doi:10.3390/ijms24032927. |
[17] | ZENG X, HU Y, CHEN Y, et al. Retinal neurovascular impairment in non-diabetic and non-dialytic chronic kidney disease patients[J]. Front Neurosci, 2021, 15:703898. doi:10.3389/fnins.2021.703898. |
[18] | KASUMOVIC A, MATOC I, REBIC D, et al. Assessment of retinal microangiopathy in chronic kidney disease patients[J]. Med Arch, 2020, 74(3):191-194. doi:10.5455/medarh.2020.74.191-194. |
[19] | GRUNWALD J E, PISTILLI M, YING G S, et al. Association between progression of retinopathy and concurrent progression of kidney disease:Findings from the Chronic Renal Insufficiency Cohort(CRIC)Study[J]. JAMA Ophthalmol, 2019, 137(7):767-774. doi:10.1001/jamaophthalmol.2019.1052. |
[20] | MARX N, FEDERICI M, SCHüTT K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes[J]. Eur Heart J,2023, 44(39):4043-4140. doi:10.1093/eurheartj/ehad192. |
[21] | 中华医学会糖尿病学分会微血管并发症学组. 中国糖尿病肾脏病防治指南(2021年版)[J]. 中华糖尿病杂志, 2021, 13(8):762-784. |
Microvascular Complications Group of Chinese Diabetes Society. Clinical guideline for the prevention and treatment of diabetic kidney disease in China(2021 edition)[J]. Chinese Journal of Diabetes, 2021, 13(8):762-784. doi:10.3760/cma.j.cn115791-20210706-00369. | |
[22] | American Diabetes Association Professional Practice Committee. 3. Prevention or Delay of Type 2 Diabetes and Associated Comorbidities:Standards of Medical Care in Diabetes-2022[J]. Diabetes Care, 2022, 45(Suppl 1):S39-S45. doi:10.2337/dc22-S003. |
[23] | TU X, LUO N, LV Y, et al. Prognostic evaluation model of diabetic nephropathy patients[J]. Ann Palliat Med, 2021, 10(6):6867-6872. doi:10.21037/apm-21-1454. |
[24] | SHI S, GAO L, ZHANG J, et al. The automatic detection of diabetic kidney disease from retinal vascular parameters combined with clinical variables using artificial intelligence in type-2 diabetes patients[J]. BMC Med Inform Decis Mak, 2023, 23(1):241. doi:10.1186/s12911-023-02343-9. |
[25] | SUN Z, TANG F, WONG R, et al. OCT Angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema:a prospective study[J]. Ophthalmology, 2019, 126(12):1675-1684. doi:10.1016/j.ophtha.2019.06.016. |
[26] | CHEUNG C Y, TANG F, NG D S, et al. The relationship of quantitative retinal capillary network to kidney function in type 2 diabetes[J]. Am J Kidney Dis, 2018, 71(6):916-918. doi:10.1053/j.ajkd.2017.12.010. |
[27] | WANG W, HE M, GONG X, et al. Association of renal function with retinal vessel density in patients with type 2 diabetes by using swept-source optical coherence tomographic angiography[J]. Br J Ophthalmol, 2020, 104(12):1768-1773. doi:10.1136/bjophthalmol-2019-315450. |
[28] | ZHUANG X, CAO D, ZENG Y, et al. Associations between retinal microvasculature/microstructure and renal function in type 2 diabetes patients with early chronic kidney disease[J]. Diabetes Res Clin Pract, 2020, 168:108373. doi:10.1016/j.diabres.2020.108373. |
[29] | AMEER O Z. Hypertension in chronic kidney disease:What lies behind the scene[J]. Front Pharmacol, 2022, 13:949260. doi:10.3389/fphar.2022.949260. |
[30] | CHUA J, CHIN C, HONG J, et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography[J]. J Hypertens, 2019, 37(3):572-580. doi:10.1097/HJH.0000000000001916. |
[31] | MULÈ G, VADALà M, LA BLASCA T, et al. Association between early-stage chronic kidney disease and reduced choroidal thickness in essential hypertensive patients[J]. Hypertens Res, 2019, 42(7):990-1000. doi:10.1038/s41440-018-0195-1. |
[32] | VADALÀ M, CASTELLUCCI M, GUARRASI G, et al. Retinal and choroidal vasculature changes associated with chronic kidney disease[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(8):1687-1698. doi:10.1007/s00417-019-04358-3. |
[33] | CHUA J, LE T T, TAN B, et al. Choriocapillaris microvasculature dysfunction in systemic hypertension[J]. Sci Rep, 2021, 11(1):4603. doi:10.1038/s41598-021-84136-6. |
[34] | BASIONY A I, ATTA S N, DEWIDAR N M, et al. Association of chorioretinal thickness with chronic kidney disease[J]. BMC Ophthalmol, 2023, 23(1):55. doi:10.1186/s12886-023-02802-x. |
[35] | SHIN Y U, LEE S E, KANG M H, et al. Evaluation of changes in choroidal thickness and the choroidal vascularity index after hemodialysis in patients with end-stage renal disease by using swept-source optical coherence tomography[J]. Medicine(Baltimore), 2019, 98(18):e15421. doi:10.1097/MD.0000000000015421. |
[36] | HWANG H, CHAE J B, KIM J Y, et al. Changes in optical coherence tomography findings in patients with chronic renal failure undergoing dialysis for the first time[J]. Retina, 2019, 39(12):2360-2368. doi:10.1097/IAE.0000000000002312. |
[37] | NAKANO H, HASEBE H, MURAKAMI K, et al. Choroid structure analysis following initiation of hemodialysis by using swept-source optical coherence tomography in patients with and without diabetes[J]. PLoS One, 2020, 15(9):e0239072. doi:10.1371/journal.pone.0239072. |
[38] | ZHANG J F, WISEMAN S, VALDÉS-HERNÁNDEZ M C, et al. The application of optical coherence tomography angiography in cerebral small vessel disease, ischemic stroke,and dementia:a systematic review[J]. Front Neurol, 2020, 11:1009. doi:10.3389/fneur.2020.01009. |
[39] | FINDLAY M D, DAWSON J, DICKIE D A, et al. Investigating the relationship between cerebral blood flow and cognitive function in hemodialysis patients[J]. J Am Soc Nephrol, 2019, 30(1):147-158. doi:10.1681/ASN.2018050462. |
[40] | HUANG H. Pericyte-Endothelial interactions in the retinal microvasculature[J]. Int J Mol Sci, 2020, 21(19):7413. doi:10.3390/ijms21197413. |
[41] | STEHOUWER C. Microvascular dysfunction and hyperglycemia:a vicious cycle with widespread consequences[J]. Diabetes, 2018, 67(9):1729-1741. doi:10.2337/dbi17-0044. |
[42] | NÄGELE M P, BARTHELMES J, LUDOVICI V, et al. Retinal microvascular dysfunction in heart failure[J]. Eur Heart J, 2018, 39(1):47-56. doi:10.1093/eurheartj/ehx565. |
[43] | CIMMINO G, NATALE F, ALFIERI R, et al. Non-conventional risk factors:"Fact" or "Fake" in cardiovascular disease prevention?[J]. Biomedicines, 2023, 11(9):2353. doi:10.3390/biomedicines11092353. |
[44] | LEMMENS S, DEVULDER A, VAN KEER K, et al. Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke:assessment of a potential biomarker[J]. Front Neurosci, 2020, 14:16. doi:10.3389/fnins.2020.00016. |
[45] | GRUNWALD J E, PISTILLI M, YING G S, et al. Progression of retinopathy and incidence of cardiovascular disease:findings from the chronic renal insufficiency cohort study[J]. Br J Ophthalmol, 2021, 105(2):246-252. doi:10.1136/bjophthalmol-2019-315333. |
[46] | ARNOULD L, GUENANCIA C, AZEMAR A, et al. The EYE-MI pilot study:a prospective acute coronary syndrome cohort evaluated with retinal optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2018, 59(10):4299-4306. doi:10.1167/iovs.18-24090. |
[47] | LIEW G, XIE J, NGUYEN H, et al. Hypertensive retinopathy and cardiovascular disease risk: 6 population-based cohorts Meta-analysis[J]. Int J Cardiol Cardiovasc Risk Prev, 2023, 17:200180. doi:10.1016/j.ijcrp.2023.200180. |
[48] | OSTRIN L A, HARB E, NICKLA D L, et al. IMI-The dynamic choroid:new insights,challenges,and potential significance for human myopia[J]. Invest Ophthalmol Vis Sci, 2023, 64(6):4. doi:10.1167/iovs.64.6.4. |
[49] | KHALILIPUR E, MAHDIZAD Z, MOLAZADEH N, et al. Microvascular and structural analysis of the retina and choroid in heart failure patients with reduced ejection fraction[J]. Sci Rep, 2023, 13(1):5467. doi:10.1038/s41598-023-32751-w. |
[50] | WANG J, JIANG J, ZHANG Y, et al. Retinal and choroidal vascular changes in coronary heart disease: an optical coherence tomography angiography study[J]. Biomed Opt Express, 2019, 10(4):1532-1544. doi:10.1364/BOE.10.001532. |
[51] | JOO Y S, RIM T H, KOH H B, et al. Non-invasive chronic kidney disease risk stratification tool derived from retina-based deep learning and clinical factors[J]. NPJ Digit Med, 2023, 6(1):114. doi:10.1038/s41746-023-00860-5. |
[52] | RUDNICKA A R, WELIKALA R, BARMAN S, et al. Artificial intelligence-enabled retinal vasculometry for prediction of circulatory mortality, myocardial infarction and stroke[J]. Br J Ophthalmol, 2022, 106(12):1722-1729. doi:10.1136/bjo-2022-321842. |
[1] | 张兰英, 张福安, 刘茂茂, 陈杰, 周健, 刘钰婷, 欧阳瑶. CD1a+和CD83+树突状细胞在COPD小鼠肺组织中的分布及意义[J]. 天津医药, 2024, 52(9): 913-916. |
[2] | 李冬生, 秦艺榕, 乔曼, 迟航, 崔青敏, 李晓秋. 清咳平喘颗粒对COPD急性加重期的临床疗效[J]. 天津医药, 2024, 52(8): 854-857. |
[3] | 吴静, 范志娟, 刘树业. 慢性乙型肝炎发展为肝细胞癌过程中血浆游离氨基酸水平的变化及临床意义[J]. 天津医药, 2024, 52(7): 738-742. |
[4] | 陈芋洁, 黄霞, 邓铂林, 贾文文. 金合欢素调节Hippo信号通路对糖尿病视网膜病变大鼠血管生成的影响[J]. 天津医药, 2024, 52(6): 578-583. |
[5] | 赵术彤, 丁运, 李月川, 赵晓赟, 耿华, 徐美林. 轻度慢性阻塞性肺疾病的病理特征及其与炎性因子的相关性[J]. 天津医药, 2024, 52(6): 643-647. |
[6] | 冯李婷, 李莉, 谢鑫, 王星. 天津地区部分居民慢性阻塞性肺疾病影响因素分析[J]. 天津医药, 2024, 52(4): 427-431. |
[7] | 宋喜, 葛益林, 李殷, 宋辉, 成嘉明. 慢性鼻窦炎患者MMP-9的表达及与上皮间质转化的相关性研究[J]. 天津医药, 2024, 52(3): 245-249. |
[8] | 付秀娟, 卢祖能. 糖尿病合并慢性炎性脱髓鞘性多发性神经根神经病研究进展[J]. 天津医药, 2024, 52(2): 220-224. |
[9] | 刘燕, 许靖, 马蕾, 曹冠亚, 赵凤德. AECOPD患者外周血EOS、D-D和NLR与肺通气功能的关系[J]. 天津医药, 2024, 52(12): 1261-1265. |
[10] | 屠昌明, 田园, 汪鹏程, 任鹏, 赵寅生. SII、RAR与AECOPD患者病情严重程度及并发呼吸衰竭的关系[J]. 天津医药, 2024, 52(12): 1317-1321. |
[11] | 丁宁, 李亚杰, 刘敏琦, 李奇, 邢政, 褚晓蕾, 徐卫国. 慢性疼痛患者脑电时间-频率信号变化研究进展[J]. 天津医药, 2024, 52(12): 1340-1344. |
[12] | 于志鸿, 王小琴. 欧前胡素衍生物对COPD肺泡Ⅱ型细胞活性及耐药蛋白的影响[J]. 天津医药, 2024, 52(11): 1127-1130. |
[13] | 顾芸芸, 仲崇明, 杨海燕. 尿酸/白蛋白比值对慢性肾脏病患者并发冠心病的预测价值[J]. 天津医药, 2024, 52(11): 1202-1206. |
[14] | 张振华, 付伟, 刘伟良, 李俊彦, 黄涛, 胡辉, 范志刚. PET/CT影像组学结合LncRNA-DGCR5在NSCLC精准医疗中的应用研究[J]. 天津医药, 2023, 51(9): 1011-1015. |
[15] | 隋源, 张成森, 王爽, 李雪丽, 勾晓梅. circRNA-ZNF532、circRNA-HIPK3与糖尿病视网膜病变的相关性研究[J]. 天津医药, 2023, 51(9): 993-997. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||