[1] |
ZHU H, DONG B, ZHANG Y, et al. Integrated genomic analyses identify high-risk factors and actionable targets in T-cell acute lymphoblastic leukemia[J]. Blood Sci, 2022, 4(1):16-28. doi:10.1097/BS9.0000000000000102.
|
[2] |
COLMONE A, AMORIM M, PONTIER A L, et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells[J]. Science, 2008, 322(5909):1861-1865. doi:10.1126/science.1164390.
|
[3] |
YIN X, HU L, ZHANG Y, et al. PDGFB-expressing mesenchymal stem cells improve human hematopoietic stem cell engraftment in immunodeficient mice[J]. Bone Marrow Transplant, 2020, 55(6):1029-1040. doi:10.1038/s41409-019-0766-z.
|
[4] |
SINGH A K, PRASAD P, CANCELAS J A. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis[J]. Front Cell Dev Biol, 2023,11:1325291. doi:10.3389/fcell.2023.1325291.
|
[5] |
WU C H, WENG T F, LI J P, et al. Biology and therapeutic properties of mesenchymal stem cells in leukemia[J]. Int J Mol Sci, 2024, 25(5):2527. doi:10.3390/ijms25052527.
|
[6] |
NWABO KAMDJE A H, SEKE ETET P F, TAGNE SIMO R, et al. Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects[J]. Cancer Biol Med, 2020, 17(4):828-841. doi:10.20892/j.issn.2095-3941.2020.0133.
|
[7] |
PARK C S, YOSHIHARA H, GAO Q, et al. Stromal-induced epithelial-mesenchymal transition induces targetable drug resistance in acute lymphoblastic leukemia[J]. Cell Rep, 2023, 42(7):112804. doi:10.1016/j.celrep.2023.112804.
|
[8] |
SøNDERGAARD R H, HøJGAARD L D, REESE-PETERSEN A L, et al. Adipose-derived stromal cells increase the formation of collagens through paracrine and juxtacrine mechanisms in a fibroblast co-culture model utilizing macromolecular crowding[J]. Stem Cell Res Ther, 2022, 13(1):250. doi:10.1186/s13287-022-02923-y.
|
[9] |
TIAN C, ZHENG G, CAO Z, et al. Hes1 mediates the different responses of hematopoietic stem and progenitor cells to T cell leukemic environment[J]. Cell Cycle, 2013, 12(2):322-331. doi:10.4161/cc.23160.
|
[10] |
MAJUMDAR M K, THIEDE M A, MOSCA J D, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells[J]. J Cell Physiol, 1998, 176(1):57-66. doi:10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7.
|
[11] |
邢逸, 窦一鸣, 王敏, 等. 骨髓间充质干细胞来源外泌体对炎症微环境中巨噬细胞表型及软骨细胞的调控作用[J]. 天津医药, 2022, 50(4):343-349.
|
|
XING Y, DOU Y M, WANG M, et al. The regulating effect of bone marrow mesenchymal stem cell-derived exosomes on macrophage phenotype and chondrocytes in the inflammatory microenvironmen[J]. Tianjin Med J, 2022, 50(4):343-349. doi:10.11958/20212366.
|
[12] |
WANG J, LIU X, QIU Y, et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells[J]. J Hematol Oncol, 2018, 11(1):11. doi:10.1186/s13045-018-0554-z.
|
[13] |
CAI J, WANG J, HUANG Y, et al. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells[J]. Cell Death Dis, 2016, 7(11):e2459. doi:10.1038/cddis.2016.370.
|
[14] |
JIA R, SUN T, ZHAO X, et al. DEX-induced SREBF1 promotes BMSCs differentiation into adipocytes to attract and protect residual T-cell acute lymphoblastic leukemia cells after chemotherapy[J]. Adv Sci(Weinh), 2023, 10(19):e2205854. doi:10.1002/advs.202205854.
|
[15] |
IM J H, BUZZELLI J N, JONES K, et al. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy[J]. Nat Commun, 2020, 11(1):4064. doi:10.1038/s41467-020-17914-x.
|
[16] |
HOSAKA K, YANG Y, SEKI T, et al. Therapeutic paradigm of dual targeting VEGF and PDGF for effectively treating FGF-2 off-target tumors[J]. Nat Commun, 2020, 11(1):3704. doi:10.1038/s41467-020-17525-6.
|
[17] |
ZHOU Z, LIU Z, OU Q, et al. Targeting FGFR in non-small cell lung cancer: implications from the landscape of clinically actionable aberrations of FGFR kinases[J]. Cancer Biol Med, 2021, 18(2):490-501. doi:10.20892/j.issn.2095-3941.2020.0120.
|
[18] |
NEW J, ARNOLD L, ANANTH M, et al. Secretory autophagy in cancer-associated fibroblasts promotes head and neck cancer progression and offers a novel therapeutic target[J]. Cancer Res, 2017, 77(23):6679-6691. doi:10.1158/0008-5472.CAN-17-1077.
|
[19] |
TRAER E, JAVIDI-SHARIFI N, AGARWAL A, et al. Ponatinib overcomes FGF2-mediated resistance in CML patients without kinase domain mutations[J]. Blood, 2014, 123(10):1516-1524. doi:10.1182/blood-2013-07-518381.
|
[20] |
SHAH C A, BEI L, WANG H, et al. HoxA10 protein regulates transcription of gene encoding fibroblast growth factor 2 (FGF2) in myeloid cells[J]. J Biol Chem, 2012, 287(22):18230-18248. doi:10.1074/jbc.M111.328401.
|
[21] |
MELNICK A F, MULLIN C, LIN K, et al. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress[J]. Blood, 2023, 142(25):2159-2174. doi:10.1182/blood.2023020144.
|