• 论著 • 上一篇    下一篇

直径对微种植体和颌骨表面影响的三维有限元分析

颜丹,王建国,张锡忠   

  1. 天津市口腔医院
  • 收稿日期:2012-05-25 修回日期:2012-08-20 出版日期:2013-01-15 发布日期:2013-01-15
  • 通讯作者: 颜丹

Three-dimensional Finite Element Analysis for the Influence of Micro-implant Diameter on Micro-implant and Surface of Mandibular

  • Received:2012-05-25 Revised:2012-08-20 Published:2013-01-15 Online:2013-01-15

摘要:

【摘要】 目的分析支抗微种植体骨内段直径变化对颌骨应力分布和微种植体位移的影响,为临床选择微种植体和种植体优化设计提供理论参照。方法利用Pro/E软件建立不同骨内段直径的微种植体和下颌骨三维有限元模型,并用Hypermesh对所建立模型进行网格划分,用ANSYS软件进行模拟计算,在种植体顶部中央位置施加1.96N与颌骨面平行的作用力,分析在上述载荷作用下种植体的位移和骨界面应力的变化。结果随着种植体骨内段直径的增加,骨界面应力峰值和微种植体位移都减小,应力峰值主要集中在颈部和尖部。骨内段直径为1.5mm时,微种植体z轴的Von-mises应力值最小,且曲线最为平缓。颌骨表面应力峰值的面积关系为1.7mm>1.6mm>1.4mm>1.5mm。结论支抗微种植体骨内段直径对微种植体应力分布有影响,在本实验条件下,微种植体骨内段为1.5mm时应力分布对颌骨损伤最小,微种植体位移最小。D2(mm)1.41.51.61.7Table1Theelementnumberandthenodenumberofmodels表1模型网格总数和节点总数网格总数5816631669057140节点总数22508247222764328230材料名称皮质骨松质骨微种植体Table2Mechanicalpropertiesoftheexperimentmaterial表2实验材料的力学参数弹性模量(MPa)137001370103400泊松比0.300.300.35Figure1Sketchforthemodelsofmicro-implantandmandible图1微种植体和颌骨的模型示意图(a)微种植体实体(b)微种植体模型(c)网格划分参考(图1a),建立包含微种植体支抗的下颌后牙区简化颌骨块模型,以下颌第一磨牙横断面作为基底面,直径为10mm,高为12mm,上部设置为3mm厚的皮质骨,其余为松质骨。微种植体骨外段直径为D1(2.0mm),骨内段直径为D2(1.4、1.5、1.6、1.7mm),颈部光滑区高度0.9mm,骨内段微种植体长度为6mm(图1b)。采用Hypermesh软件进行网格划分,图1c中O为原点坐标,坐标正方向如该图右上角所示。(2)建模操作。打开Pro/E软件,根据微种植体尺寸,通过"拉伸"和"旋转"操作建立除螺纹外的微种植体模型,通过"螺旋扫描"建立微种植体的螺纹模型,通过"旋转"完成颌骨模型的建立,模型最终都保存成ACIS格式。(3)网格划分操作。将颌骨模型和微种植体模型导入到Hypermesh中,通过"boolean"运算,切割出皮质骨和松质骨以及微种植体通道,并建立皮质骨和松质骨之间的共面关系,通过"tetramesh"操作对三部分模型分别进行网格划分,调节网格大小和最小角度来控制网格质量,最后定义网格属性,本文中所有网格到采用"solid45"网格类型。模型网格总数和节点总数见表1。1.2材料属性将微种植体颌骨模型导入Ansys10.0中,微种植体及颌骨均设置为线弹性、正交各向同性的均质连续材料,微种植体材料为钛,材料力学参数见表2。1.3边界条件及载荷条件微种植体和骨模型钉道之间建立非线性接触,骨模型底部节点设置为全位移约束。计算时,在微种植体模型顶部施加与颌骨面平行的正畸作用力1.96N,即Fz=1.96N,Fx=Fy=0(图1c)。2结果2.1微种植体-骨界面应力分布在压力侧和拉力侧骨界面上沿微种植体轴向,从颌骨表面开始,每隔0.7mm采集Von-mises应力值及位移值,得到微种植体植入深度和其Von-mises应力及位移折线图,见图2。皮质骨区域(y<3mm)是主要的应力区,其峰值出现在微种植体骨界面颈部下方2~3mm,松质骨区域(y>3mm)的应力值明显小于皮质骨,随D2D16mm3mm9mm10mm1.96NFigure2Thebroken-linegraphsofstress-locationanddisplacement-locationonthemicro-implant-boneinterface图2骨界面上的应力位移折线图微种植体植入深度(mm)1234560.050.040.030.020.010.00位移(mm)(d)拉力侧位移图中不同线型代表不同微种植体骨内段直径微种植体植入深度(mm)Von-mises应力(MPa)123456300250200150100500(a)压力侧Von-mises应力微种植体植入深度(mm)123456Von-mises应力(MPa)300250200150100500(b)拉力侧Von-mises应力微种植体植入深度(mm)1234560.050.040.030.020.010.00位移(mm)(c)压力侧位移 

关键词: 有限元分析, 应力, 物理, 正畸支抗, 下颌骨, 微种植体

Abstract: Objective: To analyze the stress distribution at micro-implant-bone interface and the displacement of micro-implant based on different endosteal section diameters, and for choosing orthodontic anchorage micro-implant and optimize design of micro-implant. Methods: The finite element models of micro-implant with different endosteal section diameters and mandible were established by Pro/E; the elements were divided by Hypermesh and the results were calculated by Ansysl0.0. A force of 1.96 N was applied on the top of the implant parallel to the mandible surface to analyze the differences of the micro-implant displacement and that of the force on the micro-implant-bone interface. Results: With the increasing of endosteal section diameter, both the maximum Von-mises stress on micro-implant-bone interface and the maximum displacement in micro-implant decreased. The maximum Von-mises stress focused on the neck and tip of micro-implant. The Von-mises stress of micro-implant on z axis is the smallest, and the stress curved is the flattest at the endosteal section diameter of 1.5mm than that of other sizes. The tendence of the contour map area for mandible surface stress is 1.7mm>1.6 mm>1.4 mm>1.5 mm .Conclusion: The influence of the micro-implant diameter in-bone on the micro-implant is significant. The damage on the mandible and the displacement of the micro-implant are both the smallest in the 1.5mm case.

Key words: finite element analysis stress, mechanicalorthodontic anchorage procedures mandiblemicro-implant