[1] |
VISCO V, V ITALE C, RISPOLI A, et al. Post-COVID-19 syndrome:involvement and interactions between respiratory,cardiovascular and nervous systems[J]. J Clin Med, 2022, 11(3):524-539. doi:10.3390/jcm11030524.
|
[2] |
WU L H, YE Z N, PENG P, et al. Efficacy and safety of washed microbiota transplantation to treat patients with mild-to-severe COVID-19 and suspected of having gut microbiota dysbiosis:Study protocol for a randomized controlled trial[J]. Curr Med Sci, 2021, 41(6):1087-1095. doi:10.1007/s11596-021-2475-2.
|
[3] |
GAEBLER C, WANG Z, LORENZI J C C, et al. Evolution of antibody immunity to SARS-CoV-2[J]. Nature, 2021, 591(7851):639-644. doi:10.1038/s41586-021-03207-w.
|
[4] |
RIEDEL S, PHEIFFER C, JOHNSON R, et al. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development[J]. Front Endocrinol (Lausanne),2021, 12(2):833544. doi:10.3389/fendo.2021.833544.
|
[5] |
RUTSCH A, KANTSJÖ J B, RONCHI F, et al. The gut-brain axis:How microbiota and host inflammasome influence brain physiology and pathology[J]. Front Immunol, 2020, 11(10):604179. doi:10.3389/fimmu.2020.604179.
|
[6] |
LEWIS C V, TAYLOR W R. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease[J]. Am J Physiol Heart Circ Physiol, 2020, 319(6):H1227-H1233. doi:10.1152/ajpheart.00612.2020.
|
[7] |
BURBERRY A, WELLS M F, LIMONE F, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria[J]. Nature, 2020, 582(7810):89-94. doi:10.1038/s41586-020-2288-7.
|
[8] |
BRANISTE V, AI-ASMAKH M, KOWAL C, et al. The gut microbiota influences blood-brain barrier permeability in mice[J]. Sci Transl Med, 2014, 6(263):263ra158. doi:10.1126/scitranslmed.3009759.
|
[9] |
SANDEK A, SWIDSINSKI A, SCHROEDL W, et al. Intestinal blood flow in patients with chronic heart failure:a link with bacterial growth,gastrointestinal symptoms,and cachexia[J]. J Am Coll Cardiol, 2014, 64(11):1092-1102. doi:10.1016/j.jacc.2014.06.1179.
|
[10] |
ZHOU X, LI J, GUO J, et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction[J]. Microbiome, 2018, 6(1):66-82. doi:10.1186/s40168-018-0441-4.
|
[11] |
SIWCZAK F, LOFFET E, KAMINSKA M, et al. Intestinal stem cell-on-chip to study human host-microbiota interaction[J]. Front Immunol, 2021, 12(6):798552. doi:10.3389/fimmu.2021.798552.
|
[12] |
ALLAM-NDOUL B, CASTONGUAY-PARADIS S, VEILLEUX A. Gut microbiota and intestinal trans-epithelial permeability[J]. Int J Mol Sci, 2020, 21(17):6402-6413. doi:10.3390/ijms21176402.
|
[13] |
HAN X, LEE A, HUANG S, et al. Lactobacillus Rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids[J]. Gut Microbes, 2019, 10(3):59-76. doi:10.1080/19490976.2018.1479625.
|
[14] |
HU Z, ZHANG C, SIFUENTES-DOMINGUEZ L, et al. Small proline-rich protein 2A is a gut bactericidal protein deployed during helminth infction[J]. Science, 2021, 374(18):eabe6723. doi:10.1126/science.abe6723.
|
[15] |
ZUO T, ZHANG F, LUI G C Y, et al. Alterations in gut micro‐ biota of patients with COVID-19 during time of hospitalization[J]. Gastroenterology, 2020, 159(3):944-955. doi:10.1053/j.gastro.2020.05.048.
|
[16] |
ZUO T, ZHAN H, ZHANG F, et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge[J]. Gastroenterilogy, 2020, 159(4):1302-1310. doi:10.1053/j.gastro.2020.06.048.
|
[17] |
REN Z, WANG H, CUI G, et al. Alterations in the human oral and gut microbiomes and lipidomics in COVID‐19[J]. Gut, 2021, 70(7):1253-1265. doi:10.1136/gutjnl-2020-323826.
|
[18] |
ZUO T, LIU Q, ZHANG F, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19[J]. Gut, 2021, 70(2):276-284. doi:10.1136/gutjnl-2020-322294.
|
[19] |
LIU Y, KUANG D, LI D, et al. Roles of the gut microbiota in severe SARS-CoV-2 infection[J]. Cytokine Growth Factor Rev, 2022, 63(2):98-107. doi:10.1016/j.cytogfr.2022.01.007.
|
[20] |
HOFFMANN M, WEBER H K, SCHROEDER S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2):271-280. doi:10.1016/j.celll.2020.02.052.
|
[21] |
CHEN L, LI X, CHEN M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2[J]. Cardiovasc Res, 2020, 116(6):1097-1100. doi:10.1093/cvr/cvaa078.
|
[22] |
HASHINOTO T, PERIOT T, REHMAN A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation[J]. Nature, 2012, 487(7408):477-481. doi:10.1038/nature11228.
|
[23] |
YANG T, CHATRABORTY S, SAHA P, et al. Gnotobiotic rats reveal that gut microbiota regulates colonic mRNA of ACE2,the receptor for SARS-CoV-2 infectivity[J]. Hypertension, 2020, 76(1):e1-e3. doi:10.1161/HYPERTENSIONAHA.120.15360.
|
[24] |
WU C M, CHEN X Y, CAI Y P, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with conronavirus disease 2019 pneumonia in Wuhan,China[J]. JAMA Intern Med,2020, 180(7):934-943. doi:10.1001/jamaintermed.2020.0994.
|
[25] |
NEURATH M F. COVID-19 and immunomodulation in IBD[J]. Gut, 2020, 69(7):1335-1342. doi:10.1136/gutjnl-2020-321269.
|
[26] |
ZHANG F, MEARS J R, SHAKIB L, et al. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation[J]. Genome Med, 2021, 13(1):64-70. doi:10.1186/s13073-021-00881-3.
|
[27] |
ZHANG X, SHI L, SUN T, et al. Dysbiosis of gut microbiota and its correlation with dysregulation of cytokines in psoriasis patients[J]. BMC Microbiol, 2021, 21(1):78-86. doi:10.1086/s12866-021-02125-1.
|
[28] |
BULANDA E, WYPYCH T P. Bypassing the gut-lung axis via microbial metabolites:implications for chronic respiratory diseases[J]. Front Microbiol, 2022, 13(4):857418. doi:10.3389/fmicb.2022.857418.
|
[29] |
MELO-GONZÁLEZ F, SEPÚLVEDA-ALFARO J, SCHULTZ B M, et al. Distal consequences of mucosal infections in intestinal and lung inflammation[J]. Front Immunol, 2022, 13(3):877533. doi:10.3389/fimmu.2022.877533.
|
[30] |
NAJMI N, MEGANTARA I, ANDRIANI L, et al. Importance of gut microbiome regulation for the prevention and recovery process after SARS-CoV-2 respiratory viral infection[J]. Biomed Rep, 2022, 16(4):25-30. doi:10.3892/br.2022.1508.
|
[31] |
MULLISH B H, MARCHESI J R, MCDONALD J A K, et al. Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults:Should we be considering probiotics during viral pandemics?[J]. Gut Microbes, 2021, 13(1):1-9. doi:10.1080/19490976.2021.1900997.
|
[32] |
YU W, OU X, LIU X, et al. ACE2 contributes to the maintenance of mouse epithelial barrier function[J]. Biochem Biophys Res Commun, 2020, 533(4):1276-1282. doi:10.1016/j.bbrc.2020.10.002.
|
[33] |
ZHANG H, LI H B, LYU J R, et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection[J]. Int J Infect Dis, 2020, 96(18):19-24. doi:10.1016/j.ijid.2020.04.027.
|
[34] |
CARVALHO A, ALQUSAIRI R, ADAMS A, et al. SARS-CoV-2 gastrointestinal infection causing hemorrhagic colitis:implications for detection and transmission of COVID-19 disease[J]. Am J Gastroenterol, 2020, 115(6):942-946. doi:10.14309/ajg.0000000000000667.
|
[35] |
ROY K, AGARWAL S, BANERJEE R, et al. COVID-19 and gut immunomodulation[J]. World J Gastroenterol, 2021, 27(46):7925-7942. doi:10.3748/wjg.v27.i46.7925.
|
[36] |
MALDONADO GALDEANO C, CAZORLA S I, LEMME DUMIT J M, et al. Beneficial effects of probiotic consumption on the immune system[J]. Ann Nutr Metab, 2019, 74(2):115-124. doi:10.1159/000496426.
|
[37] |
WANG J, LI F, WEI H, et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota mediated Th17 cell-dependent inflammation[J]. J Exp Med, 2014, 211(12):2397-2410. doi:10.1084/jem.20140625.
|