天津医药 ›› 2025, Vol. 53 ›› Issue (4): 349-354.doi: 10.11958/20241809
收稿日期:
2024-11-11
修回日期:
2025-02-06
出版日期:
2025-04-15
发布日期:
2025-04-17
通讯作者:
△ E-mail:作者简介:
郝妍妍(1991),女,主治医师,主要从事临床麻醉、疼痛诊疗方面研究。E-mail:基金资助:
HAO Yanyan1(), ZHANG Yu2, BAI Yaowu, SHI Donghai1,△(
)
Received:
2024-11-11
Revised:
2025-02-06
Published:
2025-04-15
Online:
2025-04-17
Contact:
△ E-mail:郝妍妍, 张宇, 白耀武, 石东海. 瑞马唑仑调控Nrf2/GPX4通路对脓毒性休克大鼠循环功能的影响[J]. 天津医药, 2025, 53(4): 349-354.
HAO Yanyan, ZHANG Yu, BAI Yaowu, SHI Donghai. Effects of remimazolam regulating the Nrf2/GPX4 pathway on circulatory function in septic shock rats[J]. Tianjin Medical Journal, 2025, 53(4): 349-354.
摘要:
目的 探讨瑞马唑仑对脓毒性休克大鼠循环功能的影响与机制。方法 72只SPF级大鼠随机分为对照组、模型组、地塞米松组、瑞马唑仑低剂量组、瑞马唑仑高剂量组、瑞马唑仑高剂量+Nrf2抑制剂(ML385)组,每组12只。采用股静脉滴注10 mg/kg的脂多糖诱导建立脓毒性休克大鼠模型。造模6 h后,检测大鼠平均动脉压(MAP)和心率(HR);酶联免疫吸附试验测定血清乳酸(Lac)、肿瘤坏死因子-α(TNF-α)、白细胞介素(IL)-1β、IL-6、一氧化氮(NO)和内皮素1(ET-1)水平;苏木精-伊红(HE)染色观察血管组织形态学变化;TUNEL染色观察血管内皮细胞凋亡情况;二氢乙锭荧光探针检测血管组织活性氧(ROS)水平;比色法检测血管组织丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性;Western blot检测血管组织核因子E2相关因子2(Nrf2)、谷胱甘肽过氧化物酶4(GPX4)蛋白表达。结果 与对照组相比,模型组大鼠MAP、血管组织SOD活性、Nrf2、GPX4蛋白水平降低,HR和血清Lac、NO、ET-1、TNF-α、IL-1β、IL-6水平、血管内皮细胞凋亡率、血管组织ROS水平、MDA含量升高(P<0.05);与模型组比较,地塞米松组,瑞马唑仑低、高剂量组大鼠MAP、血管组织SOD活性、Nrf2、GPX4蛋白水平升高,HR和血清Lac、NO、ET-1、TNF-α、IL-1β、IL-6水平、血管内皮细胞凋亡率、血管组织ROS水平、MDA含量降低(P<0.05);Nrf2抑制剂ML385明显减弱瑞马唑仑对脓毒性休克大鼠的保护作用(P<0.05)。结论 瑞马唑仑可能通过激活Nrf2/GPX4通路,抑制炎症反应和氧化应激,减轻血管内皮细胞损伤,进而改善脓毒性休克大鼠循环功能。
中图分类号:
组别 | MAP/mmHg | HR/(次/min) | Lac/(mmol/L) |
---|---|---|---|
对照组 | 98.17±2.41 | 317.50±12.65 | 1.86±0.31 |
模型组 | 47.00±3.16a | 490.42±18.43a | 4.90±0.57a |
地塞米松组 | 85.42±2.64b | 336.92±17.30b | 2.39±0.36b |
瑞马唑仑低剂量组 | 69.00±2.49bc | 444.58±13.28bc | 4.11±0.51bc |
瑞马唑仑高剂量组 | 83.67±4.08bd | 347.42±14.58bd | 2.52±0.40bd |
瑞马唑仑高剂量+ML385组 | 55.50±4.30e | 470.50±13.60e | 4.60±0.54e |
F | 213.415** | 150.423** | 47.693** |
表1 Comparison of MAP, HR and serum Lac levels between different groups of rats
Tab.1 各组大鼠MAP、HR和血清Lac水平比较 (n=12,$\bar{x} \pm s$)
组别 | MAP/mmHg | HR/(次/min) | Lac/(mmol/L) |
---|---|---|---|
对照组 | 98.17±2.41 | 317.50±12.65 | 1.86±0.31 |
模型组 | 47.00±3.16a | 490.42±18.43a | 4.90±0.57a |
地塞米松组 | 85.42±2.64b | 336.92±17.30b | 2.39±0.36b |
瑞马唑仑低剂量组 | 69.00±2.49bc | 444.58±13.28bc | 4.11±0.51bc |
瑞马唑仑高剂量组 | 83.67±4.08bd | 347.42±14.58bd | 2.52±0.40bd |
瑞马唑仑高剂量+ML385组 | 55.50±4.30e | 470.50±13.60e | 4.60±0.54e |
F | 213.415** | 150.423** | 47.693** |
组别 | NO/(μmol/L) | ET-1/(ng/L) |
---|---|---|
对照组 | 14.27±2.31 | 5.52±1.03 |
模型组 | 56.30±4.24a | 18.44±1.99a |
地塞米松组 | 24.15±3.08b | 8.39±1.17b |
瑞马唑仑低剂量组 | 39.42±3.76bc | 13.69±1.52bc |
瑞马唑仑高剂量组 | 26.93±3.25bd | 9.02±1.31bd |
瑞马唑仑高剂量+ML385组 | 48.60±4.10e | 15.74±1.68e |
F | 123.114** | 66.340** |
表2 Comparison of serum NO and ET-1 levels between different groups of rats
Tab.2 各组大鼠血清NO、ET-1水平比较 (n=12,$\bar{x} \pm s$)
组别 | NO/(μmol/L) | ET-1/(ng/L) |
---|---|---|
对照组 | 14.27±2.31 | 5.52±1.03 |
模型组 | 56.30±4.24a | 18.44±1.99a |
地塞米松组 | 24.15±3.08b | 8.39±1.17b |
瑞马唑仑低剂量组 | 39.42±3.76bc | 13.69±1.52bc |
瑞马唑仑高剂量组 | 26.93±3.25bd | 9.02±1.31bd |
瑞马唑仑高剂量+ML385组 | 48.60±4.10e | 15.74±1.68e |
F | 123.114** | 66.340** |
组别 | TNF-α/(ng/L) | IL-1β/(ng/L) | IL-6/(ng/L) |
---|---|---|---|
对照组 | 45.60±5.72 | 22.48±4.19 | 27.75±5.21 |
模型组 | 149.44±9.83a | 97.30±8.06a | 126.49±10.30a |
地塞米松组 | 66.32±6.40b | 38.65±5.25b | 44.38±6.45b |
瑞马唑仑低剂量组 | 101.25±9.29bc | 77.24±7.13bc | 89.20±9.10bc |
瑞马唑仑高剂量组 | 70.41±7.35bd | 42.18±6.22bd | 50.69±7.28bd |
瑞马唑仑高剂量+ML385组 | 120.23±9.64e | 85.67±7.90e | 107.83±9.92e |
F | 133.122** | 124.447** | 135.321** |
表3 Comparison of serum TNF-α, IL-1β and IL-6 levels between different groups of rats
Tab.3 各组大鼠血清TNF-α、IL-1β和IL-6水平比较 (n=12,$\bar{x} \pm s$)
组别 | TNF-α/(ng/L) | IL-1β/(ng/L) | IL-6/(ng/L) |
---|---|---|---|
对照组 | 45.60±5.72 | 22.48±4.19 | 27.75±5.21 |
模型组 | 149.44±9.83a | 97.30±8.06a | 126.49±10.30a |
地塞米松组 | 66.32±6.40b | 38.65±5.25b | 44.38±6.45b |
瑞马唑仑低剂量组 | 101.25±9.29bc | 77.24±7.13bc | 89.20±9.10bc |
瑞马唑仑高剂量组 | 70.41±7.35bd | 42.18±6.22bd | 50.69±7.28bd |
瑞马唑仑高剂量+ML385组 | 120.23±9.64e | 85.67±7.90e | 107.83±9.92e |
F | 133.122** | 124.447** | 135.321** |
图2 各组大鼠血管内皮细胞凋亡情况(TUNEL染色,×200) A—F分别为对照组、模型组、地塞米松组、瑞马唑仑低剂量组、瑞马唑仑高剂量组、瑞马唑仑高剂量+ML385组。
Fig.2 Apoptosis of vascular endothelial cells in each group of rats (TUNEL staining, ×200)
组别 | 血管内皮 细胞凋亡率/% | ROS/ (平均荧光强度) | ||
---|---|---|---|---|
对照组 | 3.40±0.62 | 55.74±6.82 | ||
模型组 | 17.82±1.13a | 190.60±10.34a | ||
地塞米松组 | 6.95±0.80b | 84.95±8.15b | ||
瑞马唑仑低剂量组 | 12.04±0.91bc | 136.27±9.61bc | ||
瑞马唑仑高剂量组 | 7.32±0.85bd | 90.18±8.32bd | ||
瑞马唑仑高剂量+ML385组 | 14.11±1.02e | 165.35±10.17e | ||
F | 208.706** | 201.233** | ||
组别 | MDA/ (nmol/mg) | SOD/ (U/mg) | ||
对照组 | 5.95±0.80 | 38.60±4.15 | ||
模型组 | 14.46±1.52a | 12.75±2.30a | ||
地塞米松组 | 7.18±0.93b | 30.22±3.26b | ||
瑞马唑仑低剂量组 | 10.69±1.26bc | 18.18±2.79bc | ||
瑞马唑仑高剂量组 | 7.55±1.01bd | 28.95±3.10bd | ||
瑞马唑仑高剂量+ML385组 | 11.89±1.33e | 15.40±2.84e | ||
F | 46.962** | 62.754** |
表4 Comparison of apoptosis rate, ROS level, MDA content and SOD activity of vascular endothelial cells between different groups of rats
Tab.4 各组大鼠血管内皮细胞凋亡率、ROS水平、MDA含量和SOD活性比较比较 (n=12,$\bar{x} \pm s$)
组别 | 血管内皮 细胞凋亡率/% | ROS/ (平均荧光强度) | ||
---|---|---|---|---|
对照组 | 3.40±0.62 | 55.74±6.82 | ||
模型组 | 17.82±1.13a | 190.60±10.34a | ||
地塞米松组 | 6.95±0.80b | 84.95±8.15b | ||
瑞马唑仑低剂量组 | 12.04±0.91bc | 136.27±9.61bc | ||
瑞马唑仑高剂量组 | 7.32±0.85bd | 90.18±8.32bd | ||
瑞马唑仑高剂量+ML385组 | 14.11±1.02e | 165.35±10.17e | ||
F | 208.706** | 201.233** | ||
组别 | MDA/ (nmol/mg) | SOD/ (U/mg) | ||
对照组 | 5.95±0.80 | 38.60±4.15 | ||
模型组 | 14.46±1.52a | 12.75±2.30a | ||
地塞米松组 | 7.18±0.93b | 30.22±3.26b | ||
瑞马唑仑低剂量组 | 10.69±1.26bc | 18.18±2.79bc | ||
瑞马唑仑高剂量组 | 7.55±1.01bd | 28.95±3.10bd | ||
瑞马唑仑高剂量+ML385组 | 11.89±1.33e | 15.40±2.84e | ||
F | 46.962** | 62.754** |
图4 各组大鼠血管组织Nrf2、GPX4蛋白表达印迹图 A:对照组;B:模型组;C:地塞米松组;D:瑞马唑仑低剂量组;E:瑞马唑仑高剂量组;F:瑞马唑仑高剂量+ML385组。
Fig.4 Western blot assay of Nrf2 and GPX4 protein expression levels in vascular tissue of rats in each group
组别 | Nrf2/Lamin B1 | GPX4/GAPDH |
---|---|---|
对照组 | 0.57±0.06 | 0.73±0.08 |
模型组 | 0.20±0.03a | 0.25±0.04a |
地塞米松组 | 0.45±0.06b | 0.60±0.07b |
瑞马唑仑低剂量组 | 0.31±0.04bc | 0.39±0.05bc |
瑞马唑仑高剂量组 | 0.42±0.05bd | 0.56±0.06bd |
瑞马唑仑高剂量+ML385组 | 0.25±0.04e | 0.32±0.05e |
F | 99.902** | 113.706** |
表5 Comparison of Nrf2 and GPX4 protein levels in vascular tissue of rats between different groups
Tab.5 各组大鼠血管组织Nrf2、GPX4蛋白水平比较 (n=12,$\bar{x} \pm s$)
组别 | Nrf2/Lamin B1 | GPX4/GAPDH |
---|---|---|
对照组 | 0.57±0.06 | 0.73±0.08 |
模型组 | 0.20±0.03a | 0.25±0.04a |
地塞米松组 | 0.45±0.06b | 0.60±0.07b |
瑞马唑仑低剂量组 | 0.31±0.04bc | 0.39±0.05bc |
瑞马唑仑高剂量组 | 0.42±0.05bd | 0.56±0.06bd |
瑞马唑仑高剂量+ML385组 | 0.25±0.04e | 0.32±0.05e |
F | 99.902** | 113.706** |
[1] | 肖泽让, 何书典, 邢柏. 老年脓毒性休克患者进展为慢重症的列线图预测模型的构建及验证[J]. 天津医药, 2022, 50(12):1310-1315. |
XIAO Z R, HE S D, XING B. Construction and validation of a nomogram prediction model for the progression to chronic critical illness in elderly patients with septic shock[J]. Tianjin Med J, 2022, 50(12):1310-1315. doi:10.11958/20220519. | |
[2] | MOSCHOPOULOS C D, DIMOPOULOU D, DIMOPOULOU A, et al. New insights into the fluid management in patients with septic shock[J]. Medicina(Kaunas), 2023, 59(6):1047. doi:10.3390/medicina59061047. |
[3] | BURGDORFF A M, BUCHER M, SCHUMANN J. Vasoplegia in patients with sepsis and septic shock:pathways and mechanisms[J]. J Int Med Res, 2018, 46(4):1303-1310. doi:10.1177/0300060517743836. |
[4] | LAMBDEN S, CREAGH-BROWN B C, HUNT J, et al. Definitions and pathophysiology of vasoplegic shock[J]. Crit Care, 2018, 22(1):174. doi:10.1186/s13054-018-2102-1. |
[5] | SACHA G L, LAM S W, WANG L, et al. Association of catecholamine dose,lactate,and shock duration at vasopressin initiation with mortality in patients with septic shock[J]. Crit Care Med, 2022, 50(4):614-623. doi:10.1097/CCM.0000000000005317. |
[6] | ZHOU Z, YANG Y, WEI Y, et al. Remimazolam attenuates LPS-derived cognitive dysfunction via subdiaphragmatic vagus nerve target α7nAChR-mediated Nrf2/HO-1 signal pathway[J]. Neurochem Res, 2024, 49(5):1306-1321. doi:10.1007/s11064-024-04115-x. |
[7] | 肖锦亮, 汪威廉, 但家朋. 瑞马唑仑调节EPAC1/RAP1信号通路对急性心肌梗死大鼠心肌损伤的影响[J]. 天津医药, 2024, 52(5):475-480. |
XIAO J L, WANG W L, DAN J P. Effect of remimazolam on myocardial injury in rats with acute myocardial infarction by regulating the EPAC1/RAP1 signaling pathway[J]. Tianjin Med J, 2024, 52(5):475-480. doi:10.11958/20230890. | |
[8] | XU S, WU B, ZHONG B, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4(GPX4)axis to inhibit ferroptosis[J]. Bioengineered, 2021, 12(2):10924-10934. doi:10.1080/21655979.2021.1995994. |
[9] | SHEN K, WANG X, WANG Y, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury[J]. Redox Biol, 2023,62:102655. doi:10.1016/j.redox.2023.102655. |
[10] | ZOU X, LIU C, HUANG Z, et al. Inhibition of STEAP1 ameliorates inflammation and ferroptosis of acute lung injury caused by sepsis in LPS-induced human pulmonary microvascular endothelial cells[J]. Mol Biol Rep, 2023, 50(7):5667-5674. doi:10.1007/s11033-023-08403-7. |
[11] | 王德勇, 涂英兵, 袁娟, 等. 基于PERK/Nrf2/HO-1信号通路研究瑞马唑仑对心肌缺血再灌注损伤大鼠铁死亡的影响[J]. 现代生物医学进展, 2023, 23(23):4427-4433. |
WANG D Y, TU Y B, YUAN J, et al. Study on the effect of remifentanil on ferroptosis in rats with myocardial ischemia-reperfusion injury based on the PERK/Nrf2/HO-1 signaling pathway[J]. Advances in Modern Biomedicine, 2023, 23(23):4427-4433. doi:10.13241/j.cnki.pmb.2023.23.005. | |
[12] | 杨淼, 刘玉玉, 李淑娟. 黄芪注射液对脓毒性休克大鼠循环功能的影响[J]. 河北医药, 2011, 33(12):1789-1791. |
YANG M, LIU Y Y, LI S J. The effect of Huangqi injection on circulatory function in septic shock rats[J]. Hebei Medicine, 2011, 33(12):1789-1791. doi:10.3969/j.issn.1002-7386.2011.12.012. | |
[13] | 田加坤, 陈星海, 张敏, 等. 不同剂量液体复苏对脓毒性休克大鼠炎症因子调控及安全性评价[J]. 中国实验诊断学, 2019, 23(1):128-132. |
TIAN J K, CHEN X H, ZHANG M, et al. Regulation of inflammatory factors and safety evaluation of different doses of liquid resuscitation in septic shock rats[J]. Chinese Journal of Experimental Diagnosis, 2019, 23(1):128-132. doi:10.3969/j.issn.1007-4287.2019.01.052. | |
[14] | 陈少忠, 林梅瑟, 程黎民, 等. 红景天苷注射液对脂多糖诱导脓毒性休克肺损伤大鼠肺血管通透性的影响[J]. 中国临床药理学与治疗学, 2019, 24(11):1256-1262. |
CHEN S Z, LIN M S, CHENG L M, et al. The effect of salidroside injection on pulmonary vascular permeability in rats with lipopolysaccharide induced septic shock and lung injury[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(11):1256-1262. doi:10.12092/j.issn.1009-2501.2019.11.007. | |
[15] | 甄磊, 张懿兰, 王晓娜, 等. 瑞马唑仑减轻心肌缺血/再灌注大鼠心肌损伤[J]. 基础医学与临床, 2024, 44(9):1243-1248. |
ZHEN L, ZHANG Y L, WANG X N, et al. Rimazolen alleviates myocardial injury in rats with myocardial ischemia/reperfusion[J]. Basic Medicine & Clinical, 2024, 44(9):1243-1248. doi:10.16352/j.issn.1001-6325.2024.09.1243. | |
[16] | 冯秀晶, 辛秀, 黄静, 等. 绿原酸对脓毒症致大鼠急性肾损伤的保护作用[J]. 中国兽医杂志, 2022, 58(5):64-70. |
FENG X J, XIN X, HUANG J, et al. The protective effect of chlorogenic acid on acute kidney injury induced by sepsis in rats[J]. Chinese Journal of Veterinary Medicine, 2022, 58(5):64-70. doi:10.13881/j.cnki.hljxmsy.2022.02.0113. | |
[17] | FOSTER D M, KELLUM J A. Endotoxic septic shock:diagnosis and treatment[J]. Int J Mol Sci, 2023, 24(22):16185. doi:10.3390/ijms242216185. |
[18] | YANG X, ZHOU Y, LIU A, et al. Relationship between dynamic changes of microcirculation flow, tissue perfusion parameters, and lactate level and mortality of septic shock in ICU[J]. Contrast Media Mol Imaging, 2022,2022:1192902. doi:10.1155/2022/1192902. |
[19] | BJÖRCK V, ANDERSSON L, PÅHLMAN L I, et al. Commercial albumin solution enhances endotoxin-induced vasoplegia and inflammation[J]. Acta Anaesthesiol Scand, 2020, 64(7):982-991. doi:10.1111/aas.13598. |
[20] | ARIAS F, FRANCO-MONTALBAN F, ROMERO M, et al. Bioactive imidamide-based compounds targeted against nitric oxide synthase[J]. Bioorg Chem, 2022,120:105637. doi:10.1016/j.bioorg.2022.105637. |
[21] | FERREIRA ALVES G, AIMARETTI E, DA SILVEIRA HAHMEYER M L, et al. Pharmacological inhibition of CK2 by silmitasertib mitigates sepsis-induced circulatory collapse,thus improving septic outcomes in mice[J]. Biomed Pharmacother, 2024,178:117191. doi:10.1016/j.biopha.2024.117191. |
[22] | ZHANG Z S, CHEN W, LI T, et al. Organ-specific changes in vascular reactivity and roles of inducible nitric oxide synthase and endothelin-1 in a rabbit endotoxic shock model[J]. J Trauma Acute Care Surg, 2018, 85(4):725-733. doi:10.1097/TA.0000000000002036. |
[23] | LIU X, LIN S, ZHONG Y, et al. Remimazolam protects against LPS-induced endotoxicity improving survival of endotoxemia mice[J]. Front Pharmacol, 2021,12:739603. doi:10.3389/fphar.2021.739603. |
[24] | JOFFRE J, HELLMAN J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation[J]. Antioxid Redox Signal, 2021, 35(15):1291-1307. doi:10.1089/ars.2021.0027. |
[25] | LAI K, SONG C, GAO M, et al. Uridine alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage[J]. Int J Mol Sci, 2023, 24(6):5093. doi:10.3390/ijms24065093. |
[26] | HOU H, QIN X, LI G, et al. Nrf2-mediated redox balance alleviates LPS-induced vascular endothelial cell inflammation by inhibiting endothelial cell ferroptosis[J]. Sci Rep, 2024, 14(1):3335. doi:10.1038/s41598-024-53976-3. |
[1] | 缪妍, 朱蕾, 樊元慧. 瑞马唑仑对全麻下斜视手术患儿苏醒质量的影响[J]. 天津医药, 2025, 53(4): 425-428. |
[2] | 吴静静, 张福森, 陈皓, 赵亿, 刘泉, 李冬梅. 血清Syndecan-1、endocan-1联合qSOFA评分在脓毒症诊断及预后评估中的应用价值[J]. 天津医药, 2025, 53(2): 185-188. |
[3] | 张训功, 杨光辉, 杜增利, 薛培, 马梓昆. 铁死亡与老年骨折患者术后认知功能障碍的相关性[J]. 天津医药, 2025, 53(1): 47-51. |
[4] | 戴瑶, 方向, 黄康, 冯洁, 刘敏, 伍松柏. HAT疗法治疗脓毒症休克的临床疗效观察[J]. 天津医药, 2024, 52(8): 825-829. |
[5] | 李莘, 李雪, 王谙. 温石棉对内皮细胞Wnt5a、p16和p21表达的影响[J]. 天津医药, 2024, 52(7): 679-682. |
[6] | 杨睿, 魏琼, 孙逸坤, 赵梦竹, 程序, 刘梦华, 张冬梅. 缺氧H9c2来源外泌体对HUVEC增殖、迁移和成管能力的影响[J]. 天津医药, 2024, 52(7): 714-719. |
[7] | 刘春伟, 杨凡, 胡越成, 张敬霞, 丛洪良, 李曦铭. 急性左主干完全闭塞与次全闭塞的心电图特点和院内死亡因素的分析[J]. 天津医药, 2024, 52(7): 755-761. |
[8] | 肖锦亮, 汪威廉, 但家朋. 瑞马唑仑调节EPAC1/RAP1信号通路对急性心肌梗死大鼠心肌损伤的影响[J]. 天津医药, 2024, 52(5): 475-479. |
[9] | 任燕, 陈善萍, 周莉华, 王凌霄, 管丽娟, 杨永学. 实验室衰弱指数对老年CAP住院患者并发脓毒症及脓毒性休克风险的预测价值[J]. 天津医药, 2024, 52(4): 416-421. |
[10] | 张贵婷, 何超. oxLDL/β2GPⅠ/aβ2GPⅠ复合物通过TLR4/MyD88/NF-κB途径促进血管内皮细胞血管生成[J]. 天津医药, 2024, 52(11): 1131-1136. |
[11] | 龙华, 陈怡霏, 王庆书. 瑞马唑仑调节TLR4/MyD88/NF-κB信号通路对烧伤大鼠肠上皮细胞凋亡的影响[J]. 天津医药, 2024, 52(11): 1152-1157. |
[12] | 喻洪, 杨朝栋, 刘丹. ALT/ALP比值、PLR与老年脓毒症休克患者并发肝损伤的关系[J]. 天津医药, 2024, 52(11): 1211-1215. |
[13] | 李繁, 黎仕焕, 谢爽. 血清VCAM-1、PECAM-1水平与MMSE评分联合检测对老年全髋关节置换术患者术后谵妄的预测价值[J]. 天津医药, 2024, 52(10): 1046-1050. |
[14] | 田亚静, 杨雪, 汪静, 葛文杰, 何玉玲. 芒柄花素对妊娠期糖尿病大鼠氧化应激损伤的影响[J]. 天津医药, 2023, 51(7): 734-738. |
[15] | 左芯萌, 王振华, 高利平. 血管细胞外基质胶促进骨髓CD34+祖细胞分化为内皮细胞的实验研究[J]. 天津医药, 2023, 51(3): 225-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||