天津医药 ›› 2025, Vol. 53 ›› Issue (8): 785-790.doi: 10.11958/20250458
• 细胞与分子生物学 • 下一篇
刘虹(), 张玥玥, 王一琳, 王彩丽, 王晓敏, 毛敏, 李燕△(
)
收稿日期:
2025-02-10
修回日期:
2025-05-14
出版日期:
2025-08-15
发布日期:
2025-08-12
通讯作者:
△E-mail:作者简介:
刘虹(1976),女,副主任医师,主要从事血液肿瘤细胞遗传学和分子生物学方面的研究。E-mail:基金资助:
LIU Hong(), ZHANG Yueyue, WANG Yilin, WANG Caili, WANG Xiaomin, MAO Min, LI Yan△(
)
Received:
2025-02-10
Revised:
2025-05-14
Published:
2025-08-15
Online:
2025-08-12
Contact:
△E-mail:刘虹, 张玥玥, 王一琳, 王彩丽, 王晓敏, 毛敏, 李燕. MicroRNA-34a通过调控Wnt途径影响慢性淋巴细胞白血病进展的机制探讨[J]. 天津医药, 2025, 53(8): 785-790.
LIU Hong, ZHANG Yueyue, WANG Yilin, WANG Caili, WANG Xiaomin, MAO Min, LI Yan. The research on the mechanism of microRNA-34a influencing the progression of chronic lymphocytic leukemia by regulating the Wnt pathway[J]. Tianjin Medical Journal, 2025, 53(8): 785-790.
摘要:
目的 探讨微小RNA(miRNA)-34a通过Wnt途径影响慢性淋巴细胞白血病(CLL)疾病进展的作用机制。方法 选用人慢性B细胞白血病细胞MEC-1。实验一分组:p53激动剂组和Control组;实验二分组:Control组、miR-34a-5p mimic组及对照组、miR-34a-5p inhibitor组及对照组、miR-34a-5p inhibitor+Wnt抑制剂XAV-939组。采用实时荧光定量PCR(qPCR)检测各组细胞中miR-34a-5p表达水平;CCK8检测细胞增殖能力;Transwell迁移实验检测细胞迁移能力;双萤光素酶报告实验检测p53与miR-34a-5p及miR-34a-5p与Wnt1的靶向关系;Western blot检测Wnt/β-catenin通路相关蛋白β-连环蛋白(β-catenin)、细胞周期蛋白D1(Cyclin D1)的表达。结果 在MEC-1细胞中:① p53激动剂组中miR-34a表达升高,增殖受抑制(P<0.05);双萤光素酶报告实验证实miR-34a-5p与p53之间呈现负调控相关性。② miR-34a-5p mimic组miR-34a-5p表达升高,增殖受抑制,迁移能力降低,β-catenin、Cyclin D1蛋白表达下调(P<0.05);miR-34a-5p inhibitor组miR-34a-5p表达降低,增殖升高,迁移能力增强,β-catenin、Cyclin D1蛋白表达上调(P<0.05)。③ miR-34a-5p和Wnt1呈现负调控相关性。④ 与miR-34a-5p inhibitor组相比,XAV-939组的miR-34a-5p表达升高,迁移细胞数减少,β-catenin和Cyclin D1蛋白表达量显著降低(P<0.05)。结论 miR-34a在CLL中扮演着抑癌基因的角色,过表达miR-34a可抑制Wnt/β-catenin信号通路,降低细胞的增殖活性和迁移能力,促进细胞凋亡。
中图分类号:
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
miR-34a-5p | 上游:TGGCAGTGTCTTAGCTGGTTG | 58 |
下游:CTCAACTGGTGTCGTGGAGTC | ||
U6 | 上游:CTCGCTTCGGCAGCACAT | 94 |
下游:AACGCTTCACGAATTTGCGT | ||
p53 | 上游:CCGTGTAAAGATCCGGTACC CATTCTCCACTTCTTGTTCC | 540 |
下游:TCCTCGAGGATATCGGATCC GGTCAAGTTCTAGACCCCAT | ||
Wnt1 | 上游:CCGTGTAAAGATCCGGTACCA CAGACTCGCTAGCACTCAA | 540 |
下游:TCCTCGAGGATATCGGATCCTC ATTTCCACATCATCACAG |
表1 引物序列
Tab.1 The sequence of primer
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
miR-34a-5p | 上游:TGGCAGTGTCTTAGCTGGTTG | 58 |
下游:CTCAACTGGTGTCGTGGAGTC | ||
U6 | 上游:CTCGCTTCGGCAGCACAT | 94 |
下游:AACGCTTCACGAATTTGCGT | ||
p53 | 上游:CCGTGTAAAGATCCGGTACC CATTCTCCACTTCTTGTTCC | 540 |
下游:TCCTCGAGGATATCGGATCC GGTCAAGTTCTAGACCCCAT | ||
Wnt1 | 上游:CCGTGTAAAGATCCGGTACCA CAGACTCGCTAGCACTCAA | 540 |
下游:TCCTCGAGGATATCGGATCCTC ATTTCCACATCATCACAG |
组别 | 细胞增殖率/% | miR-34a-5p |
---|---|---|
Control组 | 102.31±7.75 | 1.02±0.02 |
p53激动剂组 | 83.16±3.89 | 2.06±0.10 |
t | 3.824* | 16.930** |
表2 Control组和p53激动剂组细胞增殖率和miR-34a-5p表达水平比较
Tab.2 Comparison of cell proliferation rate and miR-34a-5p expression levels between the control group and the p53 agonist group (n=3,$\bar{x}±s$)
组别 | 细胞增殖率/% | miR-34a-5p |
---|---|---|
Control组 | 102.31±7.75 | 1.02±0.02 |
p53激动剂组 | 83.16±3.89 | 2.06±0.10 |
t | 3.824* | 16.930** |
组别 | p53 WT | p53 MUT |
---|---|---|
miR-34a-5p mimics NC组 | 1.11±0.04 | 1.12±0.10 |
miR-34a-5p mimics组 | 0.85±0.06 | 1.11±0.03 |
t | 6.462** | 0.169 |
表3 miR-34a-5p与p53的靶向关系验证结果
Tab.3 Validation results of the targeting relationship between miR-34a-5p and p53 (n=3,$\bar{x}±s$)
组别 | p53 WT | p53 MUT |
---|---|---|
miR-34a-5p mimics NC组 | 1.11±0.04 | 1.12±0.10 |
miR-34a-5p mimics组 | 0.85±0.06 | 1.11±0.03 |
t | 6.462** | 0.169 |
组别 | miR-34a-5p | 细胞增殖率/% | 迁移细胞数/(个/视野) |
---|---|---|---|
Control组 | 1.03±0.08 | 104.91±4.62 | 238.80±17.94 |
miR-34a-5p mimics NC组 | 1.06±0.08 | 103.86±7.33 | 234.20±16.72 |
miR-34a-5p mimics组 | 1.81±0.09ab | 64.66±6.44ab | 69.40±5.64ab |
miR-34a-5p inhibitor NC组 | 1.06±0.04 | 106.83±5.63 | 242.40±11.74 |
miR-34a-5p inhibitor组 | 0.46±0.01ac | 122.64±8.25ac | 299.20±8.23ac |
F | 147.682** | 32.006** | 223.252** |
表4 过表达和抑制miR-34a-5p对MEC-1细胞增殖、迁移能力的影响
Tab.4 The effects of overexpression and inhibition of miR-34a-5p on the proliferation and migration abilities of MEC-1 cells (n=3,$\bar{x}±s$)
组别 | miR-34a-5p | 细胞增殖率/% | 迁移细胞数/(个/视野) |
---|---|---|---|
Control组 | 1.03±0.08 | 104.91±4.62 | 238.80±17.94 |
miR-34a-5p mimics NC组 | 1.06±0.08 | 103.86±7.33 | 234.20±16.72 |
miR-34a-5p mimics组 | 1.81±0.09ab | 64.66±6.44ab | 69.40±5.64ab |
miR-34a-5p inhibitor NC组 | 1.06±0.04 | 106.83±5.63 | 242.40±11.74 |
miR-34a-5p inhibitor组 | 0.46±0.01ac | 122.64±8.25ac | 299.20±8.23ac |
F | 147.682** | 32.006** | 223.252** |
组别 | Wnt1 WT | Wnt1 MUT |
---|---|---|
miR-34a-5p mimics NC组 | 1.08±0.03 | 1.12±0.02 |
miR-34a-5p mimics组 | 0.62±0.06 | 1.14±0.06 |
t | 12.796** | 0.371 |
表5 miR-34a-5p与Wnt1靶向关系验证结果
Tab.5 Validation results of the targeting relationship between miR-34a-5p and Wnt1 (n=3,$\bar{x}±s$)
组别 | Wnt1 WT | Wnt1 MUT |
---|---|---|
miR-34a-5p mimics NC组 | 1.08±0.03 | 1.12±0.02 |
miR-34a-5p mimics组 | 0.62±0.06 | 1.14±0.06 |
t | 12.796** | 0.371 |
组别 | miR-34a-5p | 细胞增殖率/% | 迁移细胞数/(个/视野) |
---|---|---|---|
Control组 | 1.03±0.08 | 104.91±4.62 | 238.80±17.94 |
miR-34a-5p inhibitor NC组 | 1.06±0.04 | 106.83±5.63 | 242.40±11.74 |
miR-34a-5p inhibitor组 | 0.46±0.01ab | 122.64±8.25ab | 299.20±8.23ab |
miR-34a-5p inhibitor+XAV-939组 | 0.81±0.09ac | 111.78±3.61 | 184.60±3.21ac |
F | 59.106** | 5.649* | 81.547** |
表6 XAV-939调控miR-34a-5p表达及其对MEC-1细胞增殖、迁移能力的影响
Tab.6 Regulation of the expression of miR-34a-5p by XAV-939 and its effects on the proliferation and migration of MEC-1 cells (n=3,$\bar{x}±s$)
组别 | miR-34a-5p | 细胞增殖率/% | 迁移细胞数/(个/视野) |
---|---|---|---|
Control组 | 1.03±0.08 | 104.91±4.62 | 238.80±17.94 |
miR-34a-5p inhibitor NC组 | 1.06±0.04 | 106.83±5.63 | 242.40±11.74 |
miR-34a-5p inhibitor组 | 0.46±0.01ab | 122.64±8.25ab | 299.20±8.23ab |
miR-34a-5p inhibitor+XAV-939组 | 0.81±0.09ac | 111.78±3.61 | 184.60±3.21ac |
F | 59.106** | 5.649* | 81.547** |
图4 Western blot检测各组MEC-1细胞β-catenin、Cyclin D1蛋白表达变化 A:Control组;B:miR-34a-5p mimics组;C:miR-34a-5p mimics NC组;D:miR-34a-5p inhibitor组;E:miR-34a-5p inhibitor NC组;F:miR-34a-5p inhibitor+XAV-939组。
Fig.4 The protein expressions levels of β-catenin and Cyclin D1 in MEC-1 cells of each group detected by Western blot assay
组别 | β-catenin | Cyclin D1 |
---|---|---|
Control组 | 0.50±0.01 | 0.52±0.01 |
miR-34a-5p mimics NC组 | 0.47±0.02 | 0.50±0.03 |
miR-34a-5p mimics组 | 0.15±0.02ab | 0.12±0.01ab |
miR-34a-5p inhibitor NC组 | 0.50±0.01 | 0.53±0.03 |
miR-34a-5p inhibitor组 | 0.86±0.01ac | 0.94±0.02 ac |
miR-34a-5p inhibitor+XAV-939组 | 0.68±0.01d | 0.66±0.04d |
F | 911.200** | 366.803** |
表7 各组细胞β-catenin、Cyclin D1的蛋白表达比较
Tab.7 Comparison of the protein expression levels of β-catenin and Cyclin D1 between the six groups (n=3,$\bar{x}±s$)
组别 | β-catenin | Cyclin D1 |
---|---|---|
Control组 | 0.50±0.01 | 0.52±0.01 |
miR-34a-5p mimics NC组 | 0.47±0.02 | 0.50±0.03 |
miR-34a-5p mimics组 | 0.15±0.02ab | 0.12±0.01ab |
miR-34a-5p inhibitor NC组 | 0.50±0.01 | 0.53±0.03 |
miR-34a-5p inhibitor组 | 0.86±0.01ac | 0.94±0.02 ac |
miR-34a-5p inhibitor+XAV-939组 | 0.68±0.01d | 0.66±0.04d |
F | 911.200** | 366.803** |
[1] | WIERDA W G, BROWN J, ABRAMSON J S, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma, version 2.2024, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2024, 22(3):175-204. doi:10.6004/jnccn.2024.0018. |
[2] | BLUME C J, HOTZ-WAGENBLATT A, HüLLEIN J, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia[J]. Leukemia, 2015, 29(10):2015-2023. doi:10.1038/leu.2015.119. |
[3] | SHARMA S, PAVLASOVA G M, SEDA V, et al. miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors[J]. Blood, 2021, 137(18):2481-2494. doi:10.1182/blood.2020005627. |
[4] | CHANG T C, WENTZEL E A, KENT O A, et al. Transactivation of miR-34a-5p by p53 broadly influences gene expression and promotes apoptosis[J]. Mol Cell, 2007, 26(5):745-752. doi:10.1016/j.molcel.2007.05.010. |
[5] | EHRMANN A S, ZADRO A, TAUSCH E, et al. The NOTCH1 and miR-34a-5p signaling network is affected by TP53 alterations in CLL[J]. Leuk Lymphoma, 2024, 65(13):1941-1953. doi:10.1080/10428194.2024.2392839. |
[6] | 刘虹, 王晓敏, 毛敏, 等. 微RNA-34a在新疆维吾尔族和汉族慢性淋巴细胞白血病患者的表达及其预后意义[J]. 中华内科杂志, 2018, 57(12):922-925. |
LIU H, WANG X M, MAO M, et al. The expression and prognostic significance of microRNA-34a in Uygur and Han patients with chronic lymphocytic leukemia in Xinjiang Uygur Autonomous Region in China[J]. Chin J Intern Med, 2018, 57(12):922-925. doi:10.3760/cma.j.issn.0578-1426.2018.12.009. | |
[7] | LI Y, MAO M, LIU H, et al. miR-34a-5p and miR-29b as indicators for prognosis of treatment-free survival of chronic lymphocytic leukemia patients in Chinese Uygur and Han populations[J]. Mol Cell Probes, 2019,47:101436. doi:10.1016/j.mcp.2019.101436. |
[8] | BHATTACHARYA M, SHARMA A R, SHARMA G, et al. Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia[J]. J Cell Biochem, 2020, 121(11):4654-4666. doi:10.1002/jcb.29683. |
[9] | 赵晓玲. miR-34a-5p抑制剂靶向调控Wnt1激活Wnt/β-catenin通路预防七氟烷诱导的海马细胞凋亡[D]. 济南: 山东大学, 2019:16-18. |
ZHAO X L. MiR-34a inhibitor targets Wnt1 to activate Wnt/β-catenin pathway to prevent sevoflurane-induced apoptosis in hippocampal cells[D]. Jinan: Shandong University, 2019:16-18. | |
[10] | SI W, LI Y, SHAO H, et al. MiR-34a inhibits breast cancer proliferation and progression by targeting Wnt1 in Wnt/β-Catenin signaling pathway[J]. Am J Med Sci, 2016, 352(2):191-199. doi:10.1016/j.amjms.2016.05.002. |
[11] | WANG Y, GUAN E, LI D, et al. miRNA-34a-5p regulates progression of neuroblastoma via modulating the Wnt/β-catenin signaling pathway by targeting SOX4[J]. Medicine(Baltimore), 2021, 100(20):e25827. doi:10.1097/MD.0000000000025827. |
[12] | LI X, ZHAO S, FU Y, et al. miR-34a-5p functions as a tumor suppressor in head and neck squamous cell cancer progression by targeting Flotillin-2[J]. Int J Biol Sci, 2021, 17(15): 4327-4339. doi:10.7150/ijbs.64851. |
[13] | 周坚, 潘晓冉, 李小娟. miRNA-34a通过调控SOX4/RAS/MAPK信号通路对中枢神经系统淋巴瘤进展的影响[J]. 河北医学, 2023, 29(2):189-194. |
ZHOU J, PAN X R, LI X J. Effect of miRNA-34a on the progression of central nervous system lymphoma by regulating SOX4/RAS/MAPK Z[J]. Hebei Medicine, 2023, 29(2):189-194. doi:10.3969/j.issn.1006-6233.2023.02.03. | |
[14] | XU X P, PENG X Q, YIN X M, et al. miR-34a-5p suppresses the invasion and metastasis of liver cancer by targeting the transcription factor YY1 to mediate MYCT1 upregulation[J]. Acta Histochem, 2020, 122(6):151576. doi:10.1016/j.acthis.2020.151576. |
[15] | CAO L, LIU Y, LU J B, et al. A feedback circuit of miR-34a-5p/MDM4/p53 regulates apoptosis in chronic lymphocytic leukemia cells[J]. Transl Cancer Res, 2020, 9(10):6143-6153. doi:10.21037/tcr-20-1710. |
[16] | MRAZ M, CERNA K, MAYEROVA V, et al. Microrna-34a as a marker for fludarabine resistance and impairment of p53-pathway in chronic lymphocytic leukemia[J]. Blood, 2012, 120(21):3883-3883. doi:10.1182/blood.v120.21.3883.3883. |
[17] | 许家威, 郭一慧, 宋辉, 等. Wnt/β-catenin信号通路在多发性骨髓瘤中的机制研究进展[J]. 天津医药, 2022, 50(8):888-891. |
XU J W, GUO Y H, SONG H, et al. The research progress on the mechanism of Wnt/β-catenin signaling pathway involved in multiple myeloma[J]. Tianjin Med J, 2022, 50(8):888-891. doi:10.11958/20220179. | |
[18] | 张慧, 陈华宁, 库德莱迪·库尔班, 等. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗[J]. 中国生物工程杂志, 2022, 42(1):104-111. |
ZHANG H, CHEN H N, KUDLEDI K, et al. The role of Wnt/β-catenin signaling pathway in carcinogenesis and immunotherapy[J]. China Biotechnology, 2022, 42(1):104-111. doi:10.13523/j.cb.2108017. | |
[19] | MANGOLINI M, GöTTE F, MOORE A, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia[J]. Nat Commun, 2018, 9(1):3839. doi:10.1038/s41467-018-06069-5. |
[20] | JANOVSKá P, BRYJA V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas[J]. Br J Pharmacol, 2017, 174(24):4701-4715. doi:10.1111/bph.13949. |
[21] | WELLENSTEIN M D, COFFELT S B, DUITS D, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis[J]. Nature, 2019, 572(7770):538-542. doi:10.1038/s41586-019-1450-6. |
[22] | SINHA S, SECRETO C R, BOYSEN J C, et al. Upregulation of AXL and β-catenin in chronic lymphocytic leukemia cells cultured with bone marrow stroma cells is associated with enhanced drug resistance[J]. Blood Cancer J, 2021, 11(2):37. doi:10.1038/s41408-021-00426-2. |
[23] | 高莹, 崔京淑, 刘兰, 等. 口腔鳞状细胞癌中细胞周期蛋白D1的表达水平及其临床意义[J]. 延边大学医学学报, 2022, 45(2):115-118. |
GAO Y, CUI J S, LIU L, et al. Expression of Cyclin D1 in oral squamous cell carcinoma and its clinical significance[J]. Journal of Medical Science Yanbian University, 2022, 45(2):115-118. doi:10.16068/j.1000-1824.2022.02.008. | |
[24] | HAO J, ZHANG W, LYU Y, et al. Combined use of cyclinD1 and Ki67 for prognosis of luminal-like breast cancer patients[J]. Front Oncol, 2021,11:737794. doi:10.3389/fonc.2021.737794. |
[25] | 秦燕子, 吴晨辰, 蔡兆根, 等. 经典型甲状腺乳头状癌中CHI3L1、β-catenin及Cyclin D1的表达及临床意义[J]. 临床与实验病理学杂志, 2021, 37(7):792-797. |
QIN Y Z, WU C C, CAI Z G, et al. Expression of CHI3L1,β-catenin and Cyclin D1 in classic thyroid papillary carcinoma and their clinical significance[J]. Chinese Journal of Clinical and Experimental Pathology, 2021, 37(7):792-797.doi:10.13315/j.cnki.cjcep.2021.07.006. |
[1] | 韩建存, 周谊. 川陈皮素调节FAK/AKT信号通路对喉鳞状细胞癌细胞增殖和凋亡的影响[J]. 天津医药, 2025, 53(6): 561-565. |
[2] | 余朝霞, 马贲, 邱林, 高倩, 尼娜. 基于网络药理学和实验验证探究鲍式层孔菌多酚的抗头颈鳞癌机制[J]. 天津医药, 2025, 53(5): 456-461. |
[3] | 李晨, 李占恩, 苏宏伟, 侯彩云, 董少文. KRT17调节Wnt/β-catenin信号通路对膀胱癌细胞增殖、凋亡及上皮间质转化的影响[J]. 天津医药, 2025, 53(5): 462-467. |
[4] | 苏红见, 张春艳, 张卫东, 韩利, 乔亚红. 鸢尾素调控EBF3/ALOX15通路影响肺腺癌细胞增殖和迁移[J]. 天津医药, 2025, 53(4): 337-342. |
[5] | 祁卫华, 黄广磊, 张媛媛, 班宏英, 毛诏旭. 连翘脂素调节cAMP/EPAC1/RAP1信号通路对肺癌细胞恶性进展的影响[J]. 天津医药, 2025, 53(4): 343-348. |
[6] | 闫玲新, 李森, 郭改莉, 孟婉秋, 徐超. 异牡荆素通过miR-339-5p/HSPA8轴调节胰腺癌细胞的生物学行为[J]. 天津医药, 2025, 53(3): 230-235. |
[7] | 马莉莉, 李子沐, 王亮, 许彭, 李秀梅. 间充质干细胞外泌体对食管癌ECA109细胞生物学行为的影响[J]. 天津医药, 2025, 53(2): 113-117. |
[8] | 杨健, 李敏, 李越洋, 田晨. T-ALL来源的骨髓基质细胞通过FGF2-FGFR2通路促进T-ALL增殖[J]. 天津医药, 2025, 53(1): 29-34. |
[9] | 高蕊, 周官恩, 洪雁, 颜艳. 蛋白酪氨酸磷酸酶受体R型对胶质瘤细胞恶性生物学行为的影响[J]. 天津医药, 2025, 53(1): 9-13. |
[10] | 张晋玮, 王燕, 王通. miR-107对口腔鳞癌细胞系CAL27增殖、侵袭及迁移的影响[J]. 天津医药, 2024, 52(9): 897-899. |
[11] | 杨敏, 潘艳莎, 张长玲, 陈红英, 郭渠莲, 刘文君. 儿童急性淋巴细胞白血病基线数据及早期治疗反应与预后的相关性[J]. 天津医药, 2024, 52(9): 954-958. |
[12] | 满祎, 许娅, 何先成, 宋少锋, 刘爱国. 三阴性乳腺癌EGFR、Ki-67、P53及CTC表达与预后的关系研究[J]. 天津医药, 2024, 52(8): 862-867. |
[13] | 刘丹阳, 李永涛, 张海燕, 李林, 刘洋, 沈雷. 乳腺癌细胞条件培养基对骨髓间充质干细胞生物学行为的影响[J]. 天津医药, 2024, 52(5): 454-458. |
[14] | 钟家帅, 冯玉梅. 小鼠骨髓和脂肪间充质干细胞定向分化能力的比较研究[J]. 天津医药, 2024, 52(2): 129-135. |
[15] | 纪晓娟, 韩浩, 张丽侠. 急性髓系白血病合并血流感染的病原菌分布与耐药性变迁及患者死亡的危险因素分析[J]. 天津医药, 2024, 52(2): 167-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||