[1] |
OSTROM Q T, PRICE M, NEFF C, et al. CBTRUS statistical report:Primary brain and other central nervous system tumors diagnosed in the United States in 2016-2020[J]. Neuro Oncol, 2023, 25(12Suppl 2):iv1-iv99. doi:10.1093/neuonc/noad149.
|
[2] |
BI J, CHOWDHRY S, WU S, et al. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets[J]. Nat Rev Cancer, 2020, 20(1):57-70. doi:10.1038/s41568-019-0226-5.
|
[3] |
SCHAFF L R, MELLINGHOFF I K. Glioblastoma and other primary brain malignancies in adults:A review[J]. JAMA, 2023, 329(7):574-587. doi:10.1001/jama.2023.0023.
|
[4] |
WANG S M, LIN W C, LIN H Y, et al. CCAAT/Enhancer-binding protein delta mediates glioma stem-like cell enrichment and ATP-binding cassette transporter ABCA1 activation for temozolomide resistance in glioblastoma[J]. Cell Death Discov, 2021, 7(1):8. doi:10.1038/s41420-020-00399-4.
|
[5] |
SIES H, JONES D P. Reactive oxygen species(ROS)as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7):363-383. doi:10.1038/s41580-020-0230-3.
|
[6] |
LI J, LIM J, EU J Q, et al. Reactive oxygen species modulation in the current landscape of anticancer therapies[J]. Antioxid Redox Signal, 2024, 41(4-6):322-341. doi:10.1089/ars.2023.0445.
|
[7] |
LIN L, WU Q, LU F, et al. Nrf2 signaling pathway:current status and potential therapeutic targetable role in human cancers[J]. Front Oncol, 2023,13:1184079. doi:10.3389/fonc.2023.1184079.
|
[8] |
NGUYEN H C, CHEN C C, LIN K H, et al. Bioactive compounds,antioxidants,and health benefits of sweet potato leaves[J]. Molecules, 2021, 26(7):1820. doi:10.3390/molecules26071820.
|
[9] |
FAN X, SONG J, ZHANG S, et al. Luteolin-7-O-β-d-glucuronide attenuated cerebral ischemia/reperfusion injury:involvement of the blood-brain barrier[J]. Biomedicines, 2024, 12(6):1366. doi:10.3390/biomedicines12061366.
|
[10] |
MURUGANATHAN N, DHANAPAL A R, BASKAR V, et al. Recent updates on source,biosynthesis,and therapeutic potential of natural flavonoid luteolin:A review[J]. Metabolites, 2022, 12(11):1145. doi:10.3390/metabo12111145.
|
[11] |
MA L, ZHANG M, ZHAO R, et al. Plant natural products:Promising resources for cancer chemoprevention[J]. Molecules, 2021, 26(4):933. doi:10.3390/molecules26040933.
|
[12] |
AFRIN S, GIAMPIERI F, GASPARRINI M, et al. Dietary phytochemicals in colorectal cancer prevention and treatment:A focus on the molecular mechanisms involved[J]. Biotechnol Adv, 2020,38:107322. doi:10.1016/j.biotechadv.2018.11.011.
|
[13] |
RAKOCZY K, KACZOR J, SOłTYK A, et al. Application of luteolin in neoplasms and nonneoplastic diseases[J]. Int J Mol Sci, 2023, 24(21):15995. doi:10.3390/ijms242115995.
|
[14] |
YANG H, ZHAO Y, SONG W, et al. The inhibition of β-catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinoma[J]. Int J Biol Macromol, 2024, 254(Pt 1):127627. doi:10.1016/j.ijbiomac.2023.127627.
|
[15] |
JOMOVA K, RAPTOVA R, ALOMAR S Y, et al. Reactive oxygen species,toxicity,oxidative stress,and antioxidants:chronic diseases and aging[J]. Arch Toxicol, 2023, 97(10):2499-2574. doi:10.1007/s00204-023-03562-9.
|
[16] |
AN X, YU W, LIU J, et al. Oxidative cell death in cancer: mechanisms and therapeutic opportunities[J]. Cell Death Dis, 2024, 15(8):556. doi:10.1038/s41419-024-06939-5.
|
[17] |
HARRIS I S, DENICOLA G M. The complex interplay between antioxidants and ROS in cancer[J]. Trends Cell Biol, 2020, 30(6):440-451. doi:10.1016/j.tcb.2020.03.002.
|
[18] |
CHOI J Y, LEE N K, WANG Y Y, et al. 1'-acetoxyeugenol acetate isolated from Thai Ginger induces apoptosis in human ovarian cancer cells by ROS production via NADPH oxidase[J]. Antioxidants(Basel), 2022, 11(2):293. doi:10.3390/antiox11020293.
|
[19] |
KUMAR V, CHAUHAN S S. Daidzein induces intrinsic pathway of apoptosis along with ER α/β ratio alteration and ROS production[J]. Asian Pac J Cancer Prev, 2021, 22(2):603-610. doi:10.31557/APJCP.2021.22.2.603.
|
[20] |
JOMOVA K, HUDECOVA L, LAURO P, et al. The effect of Luteolin on DNA damage mediated by a copper catalyzed Fenton reaction[J]. J Inorg Biochem, 2022,226:111635. doi:10.1016/j.jinorgbio.2021.111635.
|
[21] |
李欢, 邱紫欣, 徐文洁, 等. 木犀草素通过增加ROS的产生和下调AKT/mTOR通路及HO-1蛋白表达抑制肺癌A549细胞增殖[J]. 南方医科大学学报, 2024, 44(12):2367-2374.
|
|
LI H, QIU Z X, XU W J, et al. Luteolin inhibits proliferation of lung cancer A549 cells by increasing ROS production and inhibiting the AKT/mTOR signaling pathway and HO-1 expression[J]. J South Med Univ, 2024, 44(12):2367-2374. doi:10.12122/j.issn.1673-4254.2024.12.12.
|
[22] |
ZHENG Y, LI L, CHEN H, et al. Luteolin exhibits synergistic therapeutic efficacy with erastin to induce ferroptosis in colon cancer cells through the HIC1-mediated inhibition of GPX4 expression[J]. Free Radic Biol Med, 2023, 208:530-544. doi:10.1016/j.freeradbiomed.2023.09.014.
|
[23] |
WANG Y, ZHANG J, YANG Y, et al. ROS generation and autophagosome accumulation contribute to the DMAMCL-induced inhibition of glioma cell proliferation by regulating the ROS/MAPK signaling pathway and suppressing the Akt/mTOR signaling pathway[J]. Onco Targets Ther, 2019, 12:1867-1880. doi:10.2147/OTT.S195329.
|
[24] |
HALLIWELL B. Reactive oxygen species(ROS),oxygen radicals and antioxidants:Where are we now,where is the field going and where should we go?[J]. Biochem Biophys Res Commun, 2022, 633:17-19. doi:10.1016/j.bbrc.2022.08.098.
|
[25] |
DAI Q, WEI X, ZHAO J, et al. Inhibition of FSP1:A new strategy for the treatment of tumors(Review)[J]. Oncol Rep, 2024, 52(2):105. doi:10.3892/or.2024.8764.
|
[26] |
TANG X, WANG H, FAN L, et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs[J]. Free Radic Biol Med, 2011, 50(11):1599-1609. doi:10.1016/j.freeradbiomed.2011.03.008.
|