[1] |
KANG H. Regulation of acetylation states by nutrients in the inhibition of vascular inflammation and atherosclerosis[J]. Int J Mol Sci, 2023, 24(11):9338. doi:10.3390/ijms24119338.
|
[2] |
LIU T, ZHAO D, QI Y. Global trends in the epidemiology and management of dyslipidemia[J]. J Clin Med, 2022, 11(21):6377. doi:10.3390/jcm11216377.
|
[3] |
LUCHETTI F, CRINELLI R, NASONI M G, et al. LDL receptors, caveolae and cholesterol in endothelial dysfunction: oxLDLs accomplices or victims?[J]. Br J Pharmacol, 2021, 178(16):3104-3114. doi:10.1111/bph.15272.
|
[4] |
HONG D Y, LEE D H, LEE J Y, et al. Relationship between brain metabolic disorders and cognitive impairment:LDL receptor defect[J]. Int J Mol Sci, 2022, 23(15):8384. doi:10.3390/ijms23158384.
|
[5] |
ZHOU Y X, WEI J, DENG G, et al. Delivery of low-density lipoprotein from endocytic carriers to mitochondria supports steroidogenesis[J]. Nat Cell Biol, 2023, 25(7):937-949. doi:10.1038/s41556-023-01160-6.
|
[6] |
HU Y N, WU M, YU H P, et al. Analysis of low-density lipoprotein receptor gene mutations in a family with familial hypercholesterolemia[J]. PLoS One, 2024, 19(10):e0310547. doi:10.1371/journal.pone.0310547.
|
[7] |
BOLANLE I O, DE LIEDEKERKE BEAUFORT G C, WEINBERG P D. Transcytosis of LDL across arterial endothelium:mechanisms and therapeutic targets[J]. Arterioscler Thromb Vasc Biol, 2025, 45(4):468-480. doi:10.1161/ATVBAHA.124.321549.
|
[8] |
KRAEHLING J R, CHIDLOW J H, RAJAGOPAL C, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells[J]. Nat Commun, 2016, 7:13516. doi:10.1038/ncomms13516.
|
[9] |
TAO B, KRAEHLING J R, GHAFFARI S, et al. BMP-9 and LDL crosstalk regulates ALK1 endocytosis and LDL transcytosis in endothelial cells[J]. J Biol Chem, 2020, 295(52):18179-18188. doi:10.1074/jbc.RA120.015680.
|
[10] |
LEE S, SCHLEER H, PARK H, et al. Genetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in mice[J]. Nat Cardiovasc Res, 2023, 2(5):438-448. doi:10.1038/s44161-023-00266-2.
|
[11] |
HUANG L, CHAMBLISS K L, GAO X, et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis[J]. Nature, 2019, 569(7757):565-569. doi:10.1038/s41586-019-1140-4.
|
[12] |
FUNG K, HO T, XU Z, et al. Apolipoprotein A1 and high-density lipoprotein limit low-density lipoprotein transcytosis by binding SR-B1[J]. J Lipid Res, 2024, 65(4):100530. doi:10.1016/j.jlr.2024.100530.
|
[13] |
TAO H, YANCEY P G, BLAKEMORE J L, et al. Macrophage SR-BI modulates autophagy via VPS34 complex and PPARα transcription of Tfeb in atherosclerosis[J]. J Clin Invest, 2021, 131(7):e94229. doi:10.1172/JCI94229.
|
[14] |
PUDDU A, MONTECUCCO F, MAGGI D. Caveolin-1 and atherosclerosis: regulation of LDLs fate in endothelial cells[J]. Int J Mol Sci, 2023, 24(10):8869. doi:10.3390/ijms24108869.
|
[15] |
SHU Y, JIN S. Caveolin-1 in endothelial cells:A potential therapeutic target for atherosclerosis[J]. Heliyon, 2023, 9(8):e18653. doi:10.1016/j.heliyon.2023.e18653.
|
[16] |
ZHANG Y, JIA X, WANG Y, et al. Caveolin-1-mediated LDL transcytosis across endothelial cells in atherosclerosis[J]. Atherosclerosis, 2025, 402:119113. doi:10.1016/j.atherosclerosis.2025.119113.
|
[17] |
WANG D X, PAN Y Q, LIU B, et al. Cav-1 promotes atherosclerosis by activating JNK-associated signaling[J]. Biochem Biophys Res Commun, 2018, 503(2):513-520. doi:10.1016/j.bbrc.2018.05.036.
|
[18] |
ZHU L, LIAO Y, JIANG B. Role of ROS and autophagy in the pathological process of atherosclerosis[J]. J Physiol Biochem, 2024, 80(4):743-756. doi:10.1007/s13105-024-01039-6.
|
[19] |
YERLY A, VAN DER VORST E, BAUMGARTNER I, et al. Sex-specific and hormone-related differences in vascular remodelling in atherosclerosis[J]. Eur J Clin Invest, 2023, 53(1):e13885. doi:10.1111/eci.13885.
|
[20] |
YANG J, XU M, WANG Z, et al. Unraveling estrogen and PCSK9's roles in lipid metabolism disorders among ovariectomized mice[J]. Reprod Sci, 2025, 32(2):316-325. doi:10.1007/s43032-024-01614-8.
|
[21] |
QIAN C, LIU J, LIU H. Targeting estrogen receptor signaling for treating heart failure[J]. Heart Fail Rev, 2024, 29(1):125-131. doi:10.1007/s10741-023-10356-9.
|
[22] |
GHAFFARI S, NADERI NABI F, SUGIYAMA M G, et al. Estrogen inhibits LDL (low-density lipoprotein)transcytosis by human coronary artery endothelial cells via GPER (G-protein-coupled estrogen receptor) and SR-BI (scavenger receptor class b type 1)[J]. Arterioscler Thromb Vasc Biol, 2018, 38(10):2283-2294. doi:10.1161/ATVBAHA.118.310792.
|
[23] |
XIE F, LI X, XU Y, et al. Estrogen mediates an atherosclerotic-protective action via estrogen receptor alpha/SREBP-1 signaling[J]. Front Cardiovasc Med, 2022, 9:895916. doi:10.3389/fcvm.2022.895916.
|
[24] |
HUO X, SU B, QIN G, et al. HMGB1 promotes Ox-LDL-induced endothelial cell damage by inhibiting PI3K/Akt signaling pathway[J]. BMC Cardiovasc Disord, 2022, 22(1):555. doi:10.1186/s12872-022-03003-y.
|
[25] |
GHAFFARI S, JANG E, NADERINABI F, et al. Endothelial HMGB1 is a critical regulator of LDL transcytosis via an SREBP2-SR-BI axis[J]. Arterioscler Thromb Vasc Biol, 2021, 41(1):200-216. doi:10.1161/ATVBAHA.120.314557.
|
[26] |
RUBINELLI L, MANZO O L, SUNGHO J, et al. Suppression of endothelial ceramide de novo biosynthesis by Nogo-B contributes to cardiometabolic diseases[J]. Nat Commun, 2025, 16(1):1968. doi:10.1038/s41467-025-56869-9.
|
[27] |
VELAGAPUDI S, WANG D, POTI F, et al. Sphingosine-1-phosphate receptor 3 regulates the transendothelial transport of high-density lipoproteins and low-density lipoproteins in opposite ways[J]. Cardiovasc Res, 2024, 120(5):476-489. doi:10.1093/cvr/cvad183.
|
[28] |
JIA X, BAI X, YANG X, et al. VCAM-1-binding peptide targeted cationic liposomes containing NLRP3 siRNA to modulate LDL transcytosis as a novel therapy for experimental atherosclerosis[J]. Metabolism, 2022, 135:155274. doi:10.1016/j.metabol.2022.155274.
|
[29] |
FRANSÉN K, PETTERSSON C, HURTIG-WENNLÖF A. CRP levels are significantly associated with CRP genotype and estrogen use in the lifestyle,biomarker and atherosclerosis (LBA) study[J]. BMC Cardiovasc Disord, 2022, 22(1):170. doi:10.1186/s12872-022-02610-z.
|
[30] |
BIAN F, YANG X Y, XU G, et al. CRP-Induced NLRP3 Inflammasome Activation Increases LDL Transcytosis Across Endothelial Cells[J]. Front Pharmacol, 2019, 10:40. doi:10.3389/fphar.2019.00040.
|
[31] |
BIAN F, CUI J, ZHENG T, et al. Reactive oxygen species mediate angiotensin II-induced transcytosis of low-density lipoprotein across endothelial cells[J]. Int J Mol Med, 2017, 39(3):629-635. doi:10.3892/ijmm.2017.2887.
|
[32] |
MANSOUR A, MOUSA M, ABDELMANNAN D, et al. Microvascular and macrovascular complications of type 2 diabetes mellitus:Exome wide association analyses[J]. Front Endocrinol (Lausanne), 2023, 14:1143067. doi:10.3389/fendo.2023.1143067.
|
[33] |
BAI X, YANG X, JIA X, et al. CAV1-CAVIN1-LC3B-mediated autophagy regulates high glucose-stimulated LDL transcytosis[J]. Autophagy, 2020, 16(6):1111-1129. doi:10.1080/15548627.2019.1659613.
|
[34] |
SUN H, MA X, MA H, et al. High glucose levels accelerate atherosclerosis via NLRP3-IL/ MAPK/NF-κB-related inflammation pathways[J]. Biochem Biophys Res Commun, 2024, 704:149702. doi:10.1016/j.bbrc.2024.149702.
|