[1] |
QIAN C, JING Y, XIA M, et al. Comprehensive analysis of dysregulated genes associated with atherosclerotic plaque destabilization[J]. Exp Biol Med(Maywood), 2021, 246(23):2487-2494. doi:10.1177/15353702211033247.
|
[2] |
BANACH M, REINER Z, SURMA S, et al. 2024 Recommendations on the optimal use of lipid-lowering therapy in established atherosclerotic cardiovascular disease and following acute coronary syndromes:a position paper of the International Lipid Expert Panel(ILEP)[J]. Drugs, 2024, 84(12):1541-1577. doi:10.1007/s40265-024-02105-5.
|
[3] |
ATTIQ A, AFZAL S, AHMAD W, et al. Hegemony of inflammation in atherosclerosis and coronary artery disease[J]. Eur J Pharmacol, 2024, 966:176338. doi:10.1016/j.ejphar.2024.176338.
|
[4] |
OZCAN A, BOYMAN O. Mechanisms regulating neutrophil responses in immunity,allergy,and autoimmunity[J]. Allergy, 2022, 77(12):3567-3583. doi:10.1111/all.15505.
|
[5] |
YANG X, MA Y, CHEN X, et al. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis[J]. Life Sci, 2023, 328:121867. doi:10.1016/j.lfs.2023.121867.
|
[6] |
MONTARELLO N J, NGUYEN M T, WONG D, et al. Inflammation in coronary atherosclerosis and its therapeutic implications[J]. Cardiovasc Drugs Ther, 2022, 36(2):347-362. doi:10.1007/s10557-020-07106-6.
|
[7] |
YUAN Y, SUN C, LIU X, et al. The role of neutrophil extracellular traps in atherosclerosis:from the molecular to the clinical level[J]. J Inflamm Res, 2025, 18:4421-4433. doi:10.2147/JIR.S507330.
|
[8] |
CAO Y, CHEN M, JIAO X, et al. Neutrophil extracellular traps mediate the crosstalk between plaque microenvironment and unstable carotid plaque formation[J]. Exp Mol Med, 2024, 56(8):1717-1735. doi:10.1038/s12276-024-01281-4.
|
[9] |
BLOCK H, ROSSAINT J, ZARBOCK A. The fatal circle of NETs and NET-associated DAMPs contributing to organ dysfunction[J]. Cells, 2022, 11(12):1919. doi:10.3390/cells11121919.
|
[10] |
TANGETEN C, ZOUAOUI B K, DELPORTE C, et al. Unexpected role of MPO-Oxidized LDLs in atherosclerosis:in between inflammation and its resolution[J]. Antioxidants(Basel), 2022, 11(5):874. doi:10.3390/antiox11050874.
|
[11] |
YANG T, YU J, AHMED T, et al. Synthetic neutrophil extracellular traps dissect bactericidal contribution of NETs under regulation of alpha-1-antitrypsin[J]. Sci Adv, 2023, 9(17):eadf2445. doi:10.1126/sciadv.adf2445.
|
[12] |
ZHANG L, WU X, HONG L. Endothelial reprogramming in atherosclerosis[J]. Bioengineering(Basel), 2024, 11(4):325. doi:10.3390/bioengineering11040325.
|
[13] |
PERDOMO J, LEUNG H H L. Immune thrombosis:exploring the significance of immune complexes and NETosis[J]. Biology(Basel), 2023, 12(10):1332. doi:10.3390/biology12101332.
|
[14] |
YONG J, ABRAMS S T, WANG G, et al. Cell-free histones and the cell-based model of coagulation[J]. J Thromb Haemost, 2023, 21(7):1724-1736. doi:10.1016/j.jtha.2023.04.018.
|
[15] |
KU T H, RAM-MOHAN N, ZUDOCK E J, et al. Neutrophil extracellular traps have DNAzyme activity that drives bactericidal potential[J]. bioRxiv, 2023 Oct 24:2023.10.23.563618. doi:10.1101/2023.10.23.563618. [Preprint].
|
[16] |
WAGSATER D, ZHU C, BJORKEGREN J, et al. MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development in the Ldlr(-/-)Apob(100/100) mouse[J]. Int J Mol Med, 2011, 28(2):247-253. doi:10.3892/ijmm.2011.693.
|
[17] |
ZHANG H, WANG Y, QU M, et al. Neutrophil,neutrophil extracellular traps and endothelial cell dysfunction in sepsis[J]. Clin Transl Med, 2023, 13(1):e1170. doi:10.1002/ctm2.1170.
|
[18] |
WEN G, AN W, CHEN J, et al. Genetic and pharmacologic inhibition of the neutrophil elastase inhibits experimental atherosclerosis[J]. J Am Heart Assoc, 2018, 7(4):e008187. doi:10.1161/JAHA.117.008187.
|
[19] |
OSAKA M, YOSHIDA M. Citrullination of histoneH3 in neutrophil via CXCL1 enhances neutrophil adhesion to femoral artery of LDLR-/- mice fed HFD[J]. Eur Heart J, 2022, 43:3079. doi:10.1093/eurheartj/ehac544.3079.
|
[20] |
OSAKA M, DEUSHI M, AOYAMA J, et al. High-fat diet enhances neutrophil adhesion in LDLR-Null mice via hypercitrullination of histone H3[J]. JACC Basic Transl Sci, 2021, 6(6):507-523. doi:10.1016/j.jacbts.2021.04.002.
|
[21] |
TEMBHRE M K, SRIWASTVA M K, HOTE M P, et al. Interleukin-33 induces neutrophil extracellular trap (NET) formation and macrophage necroptosis via enhancing oxidative stress and secretion of proatherogenic factors in advanced atherosclerosis[J]. Antioxidants(Basel), 2022, 11(12):2343. doi:10.3390/antiox11122343.
|
[22] |
HENEIN M Y, VANCHERI S, LONGO G, et al. The role of inflammation in cardiovascular disease[J]. Int J Mol Sci, 2022, 23(21):12906. doi:10.3390/ijms232112906.
|
[23] |
THAKUR M, JUNHO C, BERNHARD S M, et al. NETs-induced thrombosis impacts on cardiovascular and chronic kidney disease[J]. Circ Res, 2023, 132(8):933-949. doi:10.1161/CIRCRESAHA.123.321750.
|
[24] |
ZDANYTE M, BORST O, MUNZER P. NET-(works)in arterial and venous thrombo-occlusive diseases[J]. Front Cardiovasc Med, 2023, 10:1155512. doi:10.3389/fcvm.2023.1155512.
|
[25] |
VARJU I, TOTH E, FARKAS A Z, et al. Citrullinated fibrinogen forms densely packed clots with decreased permeability[J]. J Thromb Haemost, 2022, 20(12):2862-2872. doi:10.1111/jth.15875.
|
[26] |
MICHAILIDOU D, DUVVURI B, KULEY R, et al. Neutrophil activation in patients with anti-neutrophil cytoplasmic autoantibody-associated vasculitis and large-vessel vasculitis[J]. Arthritis Res Ther, 2022, 24(1):160. doi:10.1186/s13075-022-02849-z.
|
[27] |
BOGDANOV L, SHISHKOVA D, MUKHAMADIYAROV R, et al. Excessive adventitial and perivascular vascularisation correlates with vascular inflammation and intimal hyperplasia[J]. Int J Mol Sci, 2022, 23(20):12156. doi:10.3390/ijms232012156.
|
[28] |
SODERBERG D, SEGELMARK M. Neutrophil extracellular traps in vasculitis,friend or foe?[J]. Curr Opin Rheumatol, 2018, 30(1):16-23. doi:10.1097/BOR.0000000000000450.
|
[29] |
PISACANO N, DHUTIA A, ROTHERY S, et al. POS0096 hypoxia and mpo-anca igg induced biophysical changes in neutrophils may promote endothelial injury in anca associated vasculitis[J]. Ann Rheum Dis, 2023, 82(Suppl 1):261-262. doi:10.1136/annrheumdis-2023-eular.4073.
|
[30] |
SHIRATORI-ASO S, NAKAZAWA D. The involvement of NETs in ANCA-associated vasculitis[J]. Front Immunol, 2023, 14:1261151. doi:10.3389/fimmu.2023.1261151.
|
[31] |
DU C, CAI N, DONG J, et al. Uncovering the role of cytoskeleton proteins in the formation of neutrophil extracellular traps[J]. Int Immunopharmacol, 2023, 123:110607. doi:10.1016/j.intimp.2023.110607.
|
[32] |
SPRENKELER E G G, TOOL A T J, Henriet S S V, et al. Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements[J]. Blood, 2022, 139(21):3166-3180. doi:10.1182/blood.2021013565.
|
[33] |
DING Z, DU F, RONNOW C, et al. Actin-related protein 2/3 complex regulates neutrophil extracellular trap expulsion and lung damage in abdominal sepsis[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 322(5):L662-L672. doi:10.1152/ajplung.00318.2021.
|
[34] |
YOSHINARI M, NISHIBATA Y, MASUDA S, et al. Low disease activity of microscopic polyangiitis in patients with anti-myosin light chain 6 antibody that disrupts actin rearrangement necessary for neutrophil extracellular trap formation[J]. Arthritis Res Ther, 2022, 24(1):274. doi:10.1186/s13075-022-02974-9.
|
[35] |
GRASSO S, NEUMANN A, LANG I M, et al. Interaction of factor VII activating protease (FSAP) with neutrophil extracellular traps (NETs)[J]. Thromb Res, 2018, 161:36-42. doi:10.1016/j.thromres.2017.11.012.
|
[36] |
ZHAO Y, SHAO C, ZHOU H, et al. Salvianolic acid B inhibits atherosclerosis and TNF-alpha-induced inflammation by regulating NF-kappaB/NLRP3 signaling pathway[J]. Phytomedicine, 2023, 119:155002. doi:10.1016/j.phymed.2023.155002.
|
[37] |
UEDA Y, NAKAZAWA D, HARASHIMA-MIYOSHI A, et al. The Involvement of Nrf2-mediated antioxidnat system in myeloperoxidase-positive antineutrophil cytoplasmic antibody-associated vasculitis[J]. Nephrol Dial Transpl, 2023, 38(Suppl 1):2709-2710. doi:10.1093/ndt/gfad063a_2709.
|
[38] |
ANTONELOU M, MICHAELSSON E, EVANS R, et al. Therapeutic myeloperoxidase inhibition attenuates neutrophil activation,ANCA-mediated endothelial damage,and crescentic GN[J]. J Am Soc Nephrol, 2020, 31(2):350-364. doi:10.1681/ASN.2019060618.
|
[39] |
PRENDECKI M, GULATI K, PISACANO N, et al. Syk activation in circulating and tissue innate immune cells in antineutrophil cytoplasmic antibody-associated vasculitis[J]. Arthritis Rheumatol, 2023, 75(1):84-97. doi:10.1002/art.42321.
|
[40] |
AIKEN S G, GRIMES T, MUNRO S, et al. A patent review of peptidylarginine deiminase 4 (PAD4) inhibitors (2014-present)[J]. Expert Opin Ther Pat, 2025, 35(6):611-621. doi:10.1080/13543776.2025.2484366.
|
[41] |
ARNETH B, ARNETH R. Neutrophil extracellular traps (NETs) and vasculitis[J]. Int J Med Sci, 2021, 18(7):1532-1540. doi:10.7150/ijms.53728.
|
[42] |
CAI M, DENG J, WU S, et al. Alpha-1 antitrypsin targeted neutrophil elastase protects against sepsis-induced inflammation and coagulation in mice via inhibiting neutrophil extracellular trap formation[J]. Life Sci, 2024, 353:122923. doi:10.1016/j.lfs.2024.122923.
|
[43] |
NONG Q, WU Y, LIU S, et al. Lead-induced actin polymerization aggravates neutrophil extracellular trap formation and contributes to vascular inflammation[J]. Ecotoxicol Environ Saf, 2025, 290:117598. doi:10.1016/j.ecoenv.2024.117598.
|
[44] |
DHAWAN U K, BHATTACHARYA P, NARAYANAN S, et al. Hypercholesterolemia impairs clearance of neutrophil extracellular traps and promotes inflammation and atherosclerotic plaque progression[J]. Arterioscler Thromb Vasc Biol, 2021, 41(10):2598-2615. doi:10.1161/ATVBAHA.120.316389.
|
[45] |
CHEN X, TU L, TANG Q, et al. DNase I targeted degradation of neutrophil extracellular traps to reduce the damage on IgAV rat[J]. PLoS One, 2023, 18(10):e291592. doi:10.1371/journal.pone.0291592.
|
[46] |
ZHANG X, MISRA S K, MOITRA P, et al. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis[J]. Autophagy, 2023, 19(3):886-903. doi:10.1080/15548627.2022.2108252.
|
[47] |
邓子昊, 黄欣扬, 钟坤江, 等. 纳米材料在动脉粥样硬化性心血管疾病中的应用进展[J]. 天津医药, 2025, 53(5):556-560.
|
|
DENG Z H, HUANG X Y, ZHONG K J, et al. The application progress of nanomaterials in atherosclerotic cardiovascular disease[J]. Tianjin Med J, 2025, 53(5):556-560. doi:10.11958/20251227.
|