天津医药 ›› 2025, Vol. 53 ›› Issue (12): 1250-1257.doi: 10.11958/20252445

• 临床研究 • 上一篇    下一篇

1990—2021年中国痛风疾病负担趋势及年龄-时期-队列模型分析

郑健虎(), 郭紫嫣, 孙旭东, 潘雅欣, 王安雨, 孙卫东()   

  1. 中国中医科学院望京医院骨关节二科(邮编100020)
  • 收稿日期:2025-07-08 修回日期:2025-08-19 出版日期:2025-12-15 发布日期:2025-12-08
  • 通讯作者: E-mail:sunweidong8239@aliyun.com
  • 作者简介:郑健虎(1998),男,博士在读,主要从事骨关节疾病的基础与临床方面研究。E-mail:zhengjianhu16@163.com

Analysis of the trends of gout disease burden in China from 1990 to 2021 and age-period-cohort model

ZHENG Jianhu(), GUO Ziyan, SUN Xudong, PAN Yaxin, WANG Anyu, SUN Weidong()   

  1. The Second Department of Orthopedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100020, China
  • Received:2025-07-08 Revised:2025-08-19 Published:2025-12-15 Online:2025-12-08
  • Contact: E-mail:sunweidong8239@aliyun.com

摘要:

目的 分析1990—2021年中国痛风疾病负担变化趋势,构建年龄-时期-队列模型(APC)探讨年龄、时期与出生队列对痛风流行病学指标的独立影响,并对2022—2035年中国痛风疾病负担进行预测。方法 从全球疾病负担(GBD)2021数据库中提取1990—2021年中国痛风疾病负担相关指标,使用分段回归分析疾病负担趋势变化,采用APC模型分析痛风患病风险及伤残调整寿命年(DALYs)风险的年龄、时期、出生队列效应,使用贝叶斯年龄-时期-队列模型(BAPC)预测2022—2035年中国痛风年龄标化的患病率(ASPR)和伤残调整寿命率(ASDR)。结果 1990—2021年,中国痛风的发病数、患病数和DALYs总量均大幅增加,年龄标化的发病率(ASIR)、ASPR、ASDR整体呈上升趋势。2021年较1990年发病数、患病数和DALYs分别增加160.45%、181.12%和175.93%;三者的年龄标化率分别上升23.74%、26.48%、25.89%。分段回归分析显示,1990—2021年ASIR、ASRP和ASDR的平均年度变化百分比(AAPC)分别为0.73%、0.82%、0.80%。2021年,患病数和DALYs在男性55~59岁组、女性65~69岁组达到峰值;患病率和DALYs率随年龄持续升高,男性自30岁起、女性自40岁起明显增加。整体上,男性在各年龄组的患病人数、患病率、DALYs数及DALYs率均高于女性。APC模型结果显示,患病率和DALYs率的年龄效应、时期效应和出生队列效应均呈整体上升趋势。分解分析显示,人口老龄化对1990—2021年发病数和DALYs增长的贡献最大。BAPC预测结果显示,至2035年,中国痛风的ASPR和ASDR将分别升至890.50/10万和27.26/10万。结论 预测2022—2035年我国痛风的ASPR、ASDR将持续增加,需针对高发人群制定有效的公共卫生预防政策,以期降低痛风造成的重大疾病负担。

关键词: 痛风, 全球疾病负担, 患病率, 伤残调整寿命年, 分段回归分析, 年龄-时期-队列模型

Abstract:

Objective To analyze the temporal trends of gout disezse burden in China from 1990 to 2021, and construct an age?period?cohort (APC) model to explore the independent effects of age, period, and birth cohort on epidemiological indicators, and predict the future burden of gout disease in China from 2022 to 2035. Methods Data on gout disease burden in China during 1990—2021 were extracted from the Global Burden of Disease (GBD) 2021 database. Joinpoint regression analysis was used to assess temporal trends. The APC model was applied to evaluate the age, period and cohort effects on prevalence risk and disability-adjusted life years (DALYs). A Bayesian age-period-cohort (BAPC) model was employed to project the age-standardized prevalence rate (ASPR) and age-standardized DALY rate (ASDR) of gout in China from 2022 to 2035. Results From 1990 to 2021, the incidence, prevalence and DALYs of gout in China all increased substantially, with overall rising trends in the age-standardized incidence rate (ASIR), ASPR and ASDR. Compared with 1990, the incidence, prevalence and DALYs in 2021 increased by 160.45%, 181.12%, and 175.93%, respectively, while their age-standardized rates increased by 23.74%, 26.48% and 25.89%. Joinpoint regression analysis revealed that average annual percentage changes (AAPCs) of 0.73% for ASIR, 0.82% for ASPR and 0.80% for ASDR during 1990-2021. In 2021, the number of cases and DALYs reached their peaks in males aged 55-59 years and females aged 65-69 years. Both prevalence and DALY rates increased steadily with age, with marked rises starting at age 30 in men and age 40 in women. Overall, males showed higher prevalence, DALYs and corresponding rates than those of females across all age groups. APC model results indicated that the age effect, period effect and cohort effects on prevalence and DALY rates presented an overall upward tread. Decomposition analysis showed that population aging contributed the most to the increase in incidence and DALYs from 1990 to 2021. BAPC projections suggested that by 2035, the ASPR and ASDR of gout in China reached 890.50 per 100,000 and 27.26 per 100,000, respectively. Conclusion The ASPR and ASDR of gout in China are projected to continue increasing from 2022 to 2035. Targeted public health strategies for high-risk populations are urgently needed to reduce the growing burden of gout.

Key words: gout, global burden of disease, prevalence, disability-adjusted life years, joinpoint regression analysis, age-period-cohort model

中图分类号: