天津医药 ›› 2017, Vol. 45 ›› Issue (4): 418-422.doi: 10.11958/20161094

• 诊断技术与方法 • 上一篇    下一篇

涂阴结核性脑膜炎诊断模型的建立与评价

刘佳庆, 张丽霞△, 孙海柏, 秦中华, 吴敏, 高明, 李玉明   

  1. 天津市海河医院, 天津市呼吸疾病研究所, 国家中医药管理局中医药防治传染病重点研究室 (邮编 300350)
  • 收稿日期:2016-10-09 修回日期:2017-03-22 出版日期:2017-04-15 发布日期:2017-04-15
  • 通讯作者: △通讯作者 E-mail:zhangli5839@163.com E-mail:jiaqing_apple@163.com
  • 作者简介:刘佳庆 (1982), 男, 主管技师, 硕士, 主要从事免疫学研究
  • 基金资助:
    天津市卫生局科技基金 (2014KZ035)

Establishment and evaluation of predictive diagnostic equation for smear negative tuberculosis meningitis

LIU Jia-qing, ZHANG Li-xia△, SUN Hai-bai, QIN Zhong-hua, WU Min, GAO Ming, LI Yu-ming   

  1. Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, TCM Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin 300350, China
  • Received:2016-10-09 Revised:2017-03-22 Published:2017-04-15 Online:2017-04-15
  • Contact: △Corresponding Author E-mail:zhangli5839@163.com E-mail:jiaqing_apple@163.com

摘要: 目的 建立一种快速、 准确诊断涂阴结核性脑膜炎 (TBM) 的实验室诊断模型。方法 选取 2014 年 6 月— 2016 年 6 月间天津市海河医院收治的涂阴 TBM 患者 67 例, 选取同期 118 例非结核性脑膜炎患者 (NTBM) 作为对照组, 其中细菌性脑膜炎 (BM) 组 61 例和病毒性脑膜炎 (VM) 组 57 例, 对其血液及脑脊液样本行常规、 生化及免疫等项目检查。采用 Logistic 回归方法建立涂阴 TBM 的诊断方程模型, 再通过 ROC 曲线评价该方程对涂阴 TBM 的诊断效能 。 结 果 当 以 BM 组 作 为 对 照 时 ,得 到 涂 阴 TBM 的 诊 断 模 型 :PRE_BM= 1/1 + e -(-5.298+0.196×ESAT-6+0.119×CFP-10-2.968×PCT+2.206×ADA_CSF+0.705×GLU_CSF+0.093×LDH_CSF) (ESAT-6: 早期分泌性靶抗原 6; CFP-10: 培养滤液蛋白 10; PCT: 降钙素原; ADA_CSF: 脑脊液腺苷脱氨酶; GLU_CSF: 脑脊液糖含量; LDH_CSF: 脑脊液乳酸脱氢酶), 其对 TBM 诊断的敏感度(Se)、 特异度(Sp)、 阳性预测值(PPV)、 阴性预测值(NPV)及其 95%CI(单位: %)分别为 97.01(89.63~ 99.64)、 98.36 (91.20~99.96)、 98.48 (91.84~99.96) 及 96.77 (88.83~99.61); 当以 VM 组作为对照时, 得到涂阴 TBM 的诊断模型为: PRE_VM=1/1+e-(-6.907+0.394×ESAT-6-0.120×Na+2.633×ADA_CSF-0.088×Cl_CSF) (Na: 钠; Cl_CSF: 脑脊液 Cl 含量), 其对 TBM 诊断的 Se、 Sp、 PPV、 NPV 及其 95%CI (单位: %) 分别为 94.03 (85.41~98.35)、 94.74 (85.38~98.90)、 95.45 (87.29~99.05) 及 93.10 (83.27~98.09);当 以 NTBM(BM + VM)组 作 为 对 照 时 ,得 到 涂 阴 TBM 的 诊 断 模 型 为 :PRE_NTBM=1/1 + e -(0.683+0.099×ESAT-6+0.063×CFP-10-2.645×PCT +1.393×ADA_CSF+1.342×TbAb_CSF( ) TbAb_CSF: 脑脊液结核抗体), 其对 TBM 诊断的 Se、 Sp、 PPV、 NPV 及其 95%CI(单位: %)分别为 94.03(85.41~98.35)、 90.68(83.93~95.25)、 85.14(74.96~92.34)及 96.40(91.03~99.01)。结论 利用诊断模型诊断涂阴 TBM, 其敏感度和特异度均较高, 可用于临床早期准确诊断 TBM, 其较高的 NPV 有利于排除确诊前的经验性抗结核用药。

关键词: 结核, 脑膜, 脑膜炎, 细菌性, 脑膜炎, 病毒性, Logistic 模型, 诊断, 敏感性与特异性

Abstract: Objective To explore a rapid and accurate method for the diagnosis of smear negative tuberculosis meningitis (TBM). Methods Sixty-seven patients with TBM were selected from Tianjin Haihe Hospital from June 2014 to June 2016, and 118 patients with non-tuberculous meningitis (NTBM) in the same period were chosen as control group, including bacterial meningitis (BM) group (n=61) and viral meningitis (VM) group (n=57). The laboratory routine, biochemical and immune indicators were tested with the specimens of both the blood and cerebrospinal fluid of all the patients. The Logistic regression equation was established for the diagnosis of TBM, and the diagnostic efficacy of which was evaluated by the receiver operating characteristic curve (ROC). Results The predictive regression equations of the TBM with BM, VM and NTBM (BM + VM) were obtained when BM group was used as a control: PRE_BM=1/1 + e -(-5.298+0.196×ESAT- 6+ 0.119×CFP-10-2.968×PCT+2.206×ADA_CSF+ 0.705×GLU_CSF+ 0.093×LDH_CSF), PRE_VM=1/1+e-(-6.907+0.394×ESAT- 6-0.120× Na+2.633×ADA_CSF- 0.088×Cl_CSF) and PRE_NTBM=1/1+e-(0.683+0.099×ESAT-6+0.063×CFP-10-2.645×PCT +1.393×ADA_CSF+ 1.342×TbAb_CSF)respectively. When BM group was served as a control, the sensitivity, specificity, positive and negative predictive values of the regression for the diagnosis of TBM were 97.01% (89.63%- 99.64% ), 98.36% (91.20%- 99.96% ), 98.48% (91.84%- 99.96% ) and 96.77% (88.83%- 99.61% ), respectively.When VM group was served as a control, which were 94.03% (85.41%- 98.35% ), 94.74% (85.38%- 98.90% ), 95.45% (87.29%- 99.05% ) and 93.10% (83.27%- 98.09% ), respectively. When NTBM group was served as control, which were 94.03% (85.41% ~98.35% ), 90.68% (83.93%- 95.25% ), 85.14% (74.96%- 92.34% ) and 96.40% (91.03%- 99.01% ), respectively. Conclusion The predictive regression equation could be used as early diagnostic TBM with high sensitivity and specificity, which should be popularized in clinical practice, while, according to the higher negative predictive value, the negative results of which could be used to rule out of the TBM and non-empirical medication.

Key words: tuberculosis, meningeal, meningitis, bacterial, meningitis, viral, Logistic models, forecasting, sensitivity and specificity