[1] |
SCHADENDORF D, VAN AKKOOI A C J, BERKING C, et al. Melanoma[J]. Lancet, 2018, 392(10151):971-984. doi:10.1016/S0140-6736(18)31559-9.
|
[2] |
AUDRITO V, MANAGÒ A, GAUDINO F, et al. Targeting metabolic reprogramming in metastatic melanoma: The key role of nicotinamide phosphoribosyltransferase (NAMPT)[J]. Semin Cell Dev Biol, 2020, 98:192-201. doi:10.1016/j.semcdb.2019.05.001.
|
[3] |
ZHAO G, GREEN C F, HUI Y H, et al. Discovery of a highly selective NAMPT inhibitor that demonstrates robust efficacy and improved retinal toxicity with nicotinic acid coadministration[J]. Mol Cancer Ther, 2017, 16(12):2677-2688. doi:10.1158/1535-7163.MCT-16-0674.
|
[4] |
LIANG B, ZHAO J, WANG X. Clinical performance of E2Fs1-3 in kidney clear cell renal cancer,evidence from bioinformatics analysis[J]. Genes Cancer, 2017, 8(5/6):600-607. doi:10.18632/genes andcancer.143.
|
[5] |
AN X, MA H, LIU Y, et al. Effects of miR-101-3p on goat granulosa cells in vitro and ovarian development in vivo via STC1[J]. J Anim Sci Biotechnol, 2020, 11:102. doi:10.1186/s40104-020-00506-6.
|
[6] |
VAN ZEIJL M C, WAN DEN EERTWEGH A J, HAANEN J B, et al. (Neo)adjuvant systemic therapy for melanoma[J]. Eur J Surg Oncol, 2017, 43(3):534-543. doi:10.1016/j.ejso.2016.07.001.
|
[7] |
GOODY D, GUPTA S K, ENGELMANN D, et al. Drug repositioning inferred from E2F1-coregulator interactions studies for the prevention and treatment of metastatic cancers[J]. Theranostics, 2019, 9(5):1490-1509. doi:10.7150/thno.29546.
|
[8] |
ZHAO H, TANG W, CHEN X, et al. The NAMPT/E2F2/SIRT1 axis promotes proliferation and inhibits p53-dependent apoptosis in human melanoma cells[J]. Biochem Biophys Res Commun, 2017, 493(1):77-84. doi:10.1016/j.bbrc.2017.09.071.
|
[9] |
ZENG Z, CAO Z, TANG Y. Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data[J]. BMC Cancer, 2020, 20(1):1037. doi:10.1186/s12885-020-07529-2.
|
[10] |
HUANG Y L, NING G, CHEN L B, et al. Promising diagnostic and prognostic value of E2Fs in human hepatocellular carcinoma[J]. Cancer Manag Res, 2019, 11:1725-1740. doi:10.2147/CMAR.S182001.
|
[11] |
SUN C C, LI S J, HU W, et al. Comprehensive analysis of the expression and prognosis for E2Fs in human breast cancer[J]. Mol Ther, 2019, 27(6):1153-1165. doi:10.1016/j.ymthe.2019.03.019.
|
[12] |
YANG C, ZHANG Z C, LIU T B, et al. E2F1/2/7/8 as independent indicators of survival in patients with cervical squamous cell carcinoma[J]. Cancer Cell Int, 2020, 20:500. doi:10.1186/s12935-020- 01594-0.
|
[13] |
LIU X, HU C. Novel potential therapeutic target for E2F1 and prognostic factors of E2F1/2/3 /5/7/8 in human gastric cancer[J]. Mol Ther Methods Clin Dev, 2020, 18:824-838. doi:10.1016/j.omtm.2020.07.017.
|
[14] |
GAO J, CHEN X, SHAN C, et al. Autophagy in cardiovascular diseases: role of noncoding RNAs[J]. Mol Ther Nucleic Acids, 2020, 23:101-118. doi:10.1016/j.omtn.2020.10.039.
|
[15] |
YAN X, ZHOU R, MA Z. Autophagy-cell survival and death[J]. Adv Exp Med Biol, 2019, 1206:667-696. doi:10.1007/978-981-15-0602-4_29.
|
[16] |
CUI G, WANG H, LIU W, et al. Glycogen phosphorylase B is regulated by miR101-3p and promotes hepatocellular carcinoma tumorigenesis[J]. Front Cell Dev Biol, 2020, 8:566494. doi:10.3389/fcell.2020.566494.
|
[17] |
HUANG Z, WU X, LI J. miR-101 suppresses colon cancer cell migration through regulation of EZH2[J]. Rev Esp Enferm Dig, 2021, 113(4):255-260. doi:10.17235/reed.2020.6800/2019.
|
[18] |
WU R S, QIU E H, ZHU J J, et al. MiR-101 promotes nasopharyngeal carcinoma cell apoptosis through inhibiting Ras/Raf/MEK/ERK signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(16):8240. doi:10.26355/eurrev_202008_22580.
|
[19] |
HUANG Y, ZOU Y, LIN L, et al. miR-101 regulates cell proliferation and apoptosis by targeting KDM1A in diffuse large B cell lymphoma[J]. Cancer Manag Res, 2019, 11:2739-2746. doi:10.2147/CMAR.S197744.
|
[20] |
WANDLER A, RIBER-HANSEN R, HAGER H, et al. Quantification of microRNA-21 and microRNA- 125b in melanoma tissue[J]. Melanoma Res, 2017, 27(5):417-428. doi:10.1097/CMR.0000000000000374.
|