天津医药 ›› 2022, Vol. 50 ›› Issue (8): 802-809.doi: 10.11958/20220477
孙祖浩1,2(), 所信君1,2, 夏贤友3, 赵爽1, 窦妍1, 于春水1,2,Δ(
)
收稿日期:
2022-03-29
修回日期:
2022-04-11
出版日期:
2022-08-15
发布日期:
2022-08-12
通讯作者:
于春水
E-mail:sunzuhao2019@163.com;chunshuiyu@tmu.edu.cn
作者简介:
孙祖浩(1997),男,硕士在读,主要从事表观遗传对学习记忆影响方面研究。E-mail: 基金资助:
SUN Zuhao1,2(), SUO Xinjun1,2, XIA Xianyou3, ZHAO Shuang1, DOU Yan1, YU Chunshui1,2,Δ(
)
Received:
2022-03-29
Revised:
2022-04-11
Published:
2022-08-15
Online:
2022-08-12
Contact:
YU Chunshui
E-mail:sunzuhao2019@163.com;chunshuiyu@tmu.edu.cn
孙祖浩, 所信君, 夏贤友, 赵爽, 窦妍, 于春水. 特异性敲低海马RNA甲基转移酶Pcif1对空间学习记忆的影响与机制研究[J]. 天津医药, 2022, 50(8): 802-809.
SUN Zuhao, SUO Xinjun, XIA Xianyou, ZHAO Shuang, DOU Yan, YU Chunshui. The effect and underlying mechanism of hippocampal specific knockdown of RNA methyltransferase Pcif1 on spatial learning and memory[J]. Tianjin Medical Journal, 2022, 50(8): 802-809.
摘要:
目的 探索RNA甲基转移酶Pcif1对海马相关空间学习记忆的影响及分子机制。方法 选择27只8周龄的雄性C57BL/6J Nifdc小鼠进行动物实验,随机分为3组(每组9只):Pcif1敲低组(对小鼠海马立体定位注射1 μL的腺相关病毒包装的靶向Pcif1的shRNA)、假手术组(对小鼠海马立体定位注射1 μL的对照腺相关病毒)、野生组(不做处理)。3周后,Morris水迷宫实验用于测试小鼠的空间学习记忆能力,Western blot检测小鼠海马组织中相关蛋白的表达。选择小鼠海马神经元来源的HT22细胞系进行体外实验,细胞分为2组:HT22-shPcif1组(通过慢病毒包装的靶向Pcif1的shRNA实现细胞Pcif1的敲低)和HT22-Ctrl组(通过对照慢病毒感染细胞),通过全转录组测序(RNA-seq)、细胞毒性实验(CCK-8)、细胞划痕和流式细胞术研究敲低Pcif1影响学习记忆的机制。结果 与野生组和假手术组相比,敲低组小鼠的空间学习记忆能力增强,小鼠海马中的抗凋亡蛋白Bcl-2表达上调。与HT22-Ctrl组相比,HT22-shPcif1组差异表达的基因富集到凋亡、迁移和增殖通路,细胞迁移能力增强,在400 μmol/L H2O2条件下细胞增殖能力提高,凋亡水平下降。结论 选择性敲低海马Pcif1可以促进小鼠的空间学习记忆,其机制可能与抗凋亡蛋白上调,促进细胞迁移和增殖有关。
中图分类号:
图1 Tabula Muris, Human Protein Atlas和Human Brain Transcriptome数据库中有关Pcif1的表达数据 A:Tabula Muris数据库中Pcif1在神经细胞的表达情况;B:Human Protein Atlas数据库中Pcif1在小鼠不同脑区的表达情况;C:Human Brain Transcriptome数据库中Pcif1在人脑中的时空表达;NCX:新皮质;HIP:海马;AMY:杏仁核;STR:纹状体;MD:丘脑背内侧核;CBC:小脑皮质。
Fig.1 Pcif1 related expression data from Tabula Muris, Human Protein Atlas and Human Brain Transcriptome datasets
组别 | 第1天 游泳速度(cm/s) | 第2天 逃避时间(s) | 第3天 逃避时间(s) | 第4天 逃避时间(s) | |
---|---|---|---|---|---|
野生组 | 20.48±1.71 | 54.95±6.06 | 51.71±6.04 | 46.36±9.36 | |
假手术组 | 20.56±1.10 | 52.58±8.36 | 55.56±5.03 | 53.37±7.00 | |
敲低组 | 20.28±1.75 | 49.63±9.90 | 46.67±16.68 | 43.02±14.32 | |
F | 1.440 | 0.749 | 1.263 | 1.764 | |
组别 | 第5天 逃避时间(s) | 第6天 逃避时间(s) | 第7天 目的象限时间(s) | 第7天 跨平台次数 | |
野生组 | 44.16±6.26 | 39.89±7.19 | 24.67±5.93 | 1(0,2) | |
假手术组 | 49.28±5.91 | 38.77±8.18 | 23.44±3.46 | 1(0,1) | |
敲低组 | 34.04±17.01b | 28.71±9.69a | 30.43±4.06ab | 1(0,1.5) | |
F或H | 3.573* | 3.849* | 5.243* | 0.027 |
表1 3组小鼠Morris水迷宫测试结果 (n=9)
Tab.1 Morris water maze results of 3 groups of mice
组别 | 第1天 游泳速度(cm/s) | 第2天 逃避时间(s) | 第3天 逃避时间(s) | 第4天 逃避时间(s) | |
---|---|---|---|---|---|
野生组 | 20.48±1.71 | 54.95±6.06 | 51.71±6.04 | 46.36±9.36 | |
假手术组 | 20.56±1.10 | 52.58±8.36 | 55.56±5.03 | 53.37±7.00 | |
敲低组 | 20.28±1.75 | 49.63±9.90 | 46.67±16.68 | 43.02±14.32 | |
F | 1.440 | 0.749 | 1.263 | 1.764 | |
组别 | 第5天 逃避时间(s) | 第6天 逃避时间(s) | 第7天 目的象限时间(s) | 第7天 跨平台次数 | |
野生组 | 44.16±6.26 | 39.89±7.19 | 24.67±5.93 | 1(0,2) | |
假手术组 | 49.28±5.91 | 38.77±8.18 | 23.44±3.46 | 1(0,1) | |
敲低组 | 34.04±17.01b | 28.71±9.69a | 30.43±4.06ab | 1(0,1.5) | |
F或H | 3.573* | 3.849* | 5.243* | 0.027 |
染色体 | 基因名称 | 基因差异倍数 | 表达变化 | Padj |
---|---|---|---|---|
chr10 | Gm48128 | 5.91 | 上调 | 5.19E-04 |
chr6 | Gm44248 | 3.00 | 上调 | 4.72E-13 |
chrX | Foxr2 | 2.79 | 上调 | 4.63E-12 |
chr7 | Nlrp4e | 2.28 | 上调 | 4.59E-08 |
chr5 | Rundc3b | 2.24 | 上调 | 2.46E-09 |
chr18 | Slc27a6 | 2.13 | 上调 | 3.95E-05 |
chrX | Rnf128 | 2.12 | 上调 | 1.52E-12 |
chr5 | Steap4 | 2.11 | 上调 | 6.19E-11 |
chr15 | Cdh10 | 2.11 | 上调 | 2.34E-05 |
chr7 | Fgf21 | 1.86 | 上调 | 1.41E-06 |
chrX | Armcx2 | -2.12 | 下调 | 6.47E-146 |
chr19 | Ifit3 | -2.33 | 下调 | 3.54E-14 |
chr5 | Oas2 | -2.57 | 下调 | 8.54E-14 |
chr12 | Cmpk2 | -2.84 | 下调 | 3.98E-10 |
chr5 | Gbp6 | -2.86 | 下调 | 2.52E-09 |
chr2 | Cdh26 | -3.36 | 下调 | 1.97E-13 |
chrY | Gm10256 | -3.45 | 下调 | 8.25E-09 |
chr5 | Oas1a | -3.46 | 下调 | 1.52E-17 |
chr12 | Rsad2 | -3.58 | 下调 | 4.80E-09 |
chrY | Gm3376 | -3.93 | 下调 | 3.34E-20 |
表2 HT22-shPcif1差异表达基因
Tab.2 Differentially expressed genes of HT22-shPcif1
染色体 | 基因名称 | 基因差异倍数 | 表达变化 | Padj |
---|---|---|---|---|
chr10 | Gm48128 | 5.91 | 上调 | 5.19E-04 |
chr6 | Gm44248 | 3.00 | 上调 | 4.72E-13 |
chrX | Foxr2 | 2.79 | 上调 | 4.63E-12 |
chr7 | Nlrp4e | 2.28 | 上调 | 4.59E-08 |
chr5 | Rundc3b | 2.24 | 上调 | 2.46E-09 |
chr18 | Slc27a6 | 2.13 | 上调 | 3.95E-05 |
chrX | Rnf128 | 2.12 | 上调 | 1.52E-12 |
chr5 | Steap4 | 2.11 | 上调 | 6.19E-11 |
chr15 | Cdh10 | 2.11 | 上调 | 2.34E-05 |
chr7 | Fgf21 | 1.86 | 上调 | 1.41E-06 |
chrX | Armcx2 | -2.12 | 下调 | 6.47E-146 |
chr19 | Ifit3 | -2.33 | 下调 | 3.54E-14 |
chr5 | Oas2 | -2.57 | 下调 | 8.54E-14 |
chr12 | Cmpk2 | -2.84 | 下调 | 3.98E-10 |
chr5 | Gbp6 | -2.86 | 下调 | 2.52E-09 |
chr2 | Cdh26 | -3.36 | 下调 | 1.97E-13 |
chrY | Gm10256 | -3.45 | 下调 | 8.25E-09 |
chr5 | Oas1a | -3.46 | 下调 | 1.52E-17 |
chr12 | Rsad2 | -3.58 | 下调 | 4.80E-09 |
chrY | Gm3376 | -3.93 | 下调 | 3.34E-20 |
图5 HT22-shPcif1差异表达基因GO分析 A:上调基因GO分析结果;B:下调基因GO分析结果;富集因子指差异表达基因位于某条GO通路中的数量与该通路上所有基因数量的比值。
Fig.5 GO analysis of differentially expressed genes of HT22-shPcif1
组别 | 细胞迁移率 | 细胞凋亡率 |
---|---|---|
HT22-Ctrl组 | 21.4±4.1 | 28.55±0.11 |
HT22-shPcif1组 | 47.2±5.5 | 24.80±0.13 |
t | 8.893** | 30.893** |
表3 HT22-shPcif1和HT22-Ctrl细胞迁移和凋亡比较 (n=3,%,$\bar{x}±s$±s)
Tab.3 Comparison of cell migration and apoptosis of HT22-shPcif1 and HT22-Ctrl cells
组别 | 细胞迁移率 | 细胞凋亡率 |
---|---|---|
HT22-Ctrl组 | 21.4±4.1 | 28.55±0.11 |
HT22-shPcif1组 | 47.2±5.5 | 24.80±0.13 |
t | 8.893** | 30.893** |
图8 400 µmol/L H2O2条件下HT22-shPcif1和HT22-Ctrl细胞的生长曲线 t(0 h)=0.166,t(12 h)=1.742,t(24 h)=0.867,t(36 h)=2.936*,t(48 h)=5.886**;*P<0.05,**P<0.01。
Fig.8 Growing curves of HT22-shPcif1 and HT22-Ctrl cells under 400 µmol/L H2O2 condition
图9 400 µmol/L H2O2条件下流式细胞术检测HT22-shPcif1和HT22-Ctrl细胞凋亡比较
Fig.9 Comparison of apoptosis measured by flow cytometry between HT22-shPcif1 and HT22-Ctrl cells under 400 µmol/L H2O2 condition
图10 Western blot检测3组小鼠海马组织Pcif1、Bcl-2、Bax、Caspase3、BACE-1和PSD95的相对表达
Fig.10 The relative expression of Pcif1, Bcl-2, Bax, Caspase3, BACE-1 and PSD95 in hippocampal tissues of three groups of mice measured by Western blot assay
组别 | Pcif1/GAPDH | Bcl-2/GAPDH | Bax/GAPDH | Caspase3/GAPDH | BACE-1/GAPDH | PSD95/GAPDH |
---|---|---|---|---|---|---|
野生组 | 0.40±0.04 | 0.88±0.04 | 2.09±0.11 | 0.41±0.03 | 0.20±0.01 | 0.35±0.02 |
假手术组 | 0.37±0.04 | 0.62±0.11 | 1.90±0.02 | 0.44±0.10 | 0.15±0.01 | 0.36±0.01 |
敲低组 | 0.15±0.02ab | 1.87±0.20ab | 1.90±0.10 | 0.37±0.07 | 0.38±0.05ab | 0.40±0.09 |
F | 23.390** | 49.260** | 3.288 | 0.423 | 30.690** | 0.417 |
表4 3组小鼠海马组织Pcif1、Bcl-2、Bax、Caspase3、BACE-1和PSD95蛋白相对水平 (n=3,$\bar{x}±s$)
Tab.4 Comparison of hippocampal relative protein levels of Pcif1, Bcl-2, Bax, Caspase3, BACE-1 and PSD95 of three groups of mice
组别 | Pcif1/GAPDH | Bcl-2/GAPDH | Bax/GAPDH | Caspase3/GAPDH | BACE-1/GAPDH | PSD95/GAPDH |
---|---|---|---|---|---|---|
野生组 | 0.40±0.04 | 0.88±0.04 | 2.09±0.11 | 0.41±0.03 | 0.20±0.01 | 0.35±0.02 |
假手术组 | 0.37±0.04 | 0.62±0.11 | 1.90±0.02 | 0.44±0.10 | 0.15±0.01 | 0.36±0.01 |
敲低组 | 0.15±0.02ab | 1.87±0.20ab | 1.90±0.10 | 0.37±0.07 | 0.38±0.05ab | 0.40±0.09 |
F | 23.390** | 49.260** | 3.288 | 0.423 | 30.690** | 0.417 |
[1] | IZQUIERDO I, FURINI C R, MYSKIW J C. Fear memory[J]. Physiol Rev, 2016, 96(2):695-750. doi: 10.1152/physrev.00018.2015. |
[2] | SHRESTHA P, AYATA P, HERRERO-VIDAL P, et al. Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation[J]. Nat Neurosci, 2020, 23(2):281-292. doi: 10.1038/s41593-019-0568-z. |
[3] | MEYER K D, JAFFREY S R. Rethinking m6A readers,writers,and erasers[J]. Annu Rev Cell Dev Biol, 2017, 33:319-342. doi: 10.1146/annurev-cellbio-100616-060758. |
[4] | SHI H, WEI J, HE C. Where,when,and how: context-dependent functions of RNA methylation writers,readers,and erasers[J]. Mol Cell, 2019, 74(4):640-650. doi: 10.1016/j.molcel.2019.04.025. |
[5] | SHI H, ZHANG X, WENG Y L, et al. m6A facilitates hippocampus-dependent learning and memory through YTHDF1[J]. Nature, 2018, 563(7730):249-253. doi: 10.1038/s41586-018-0666-1. |
[6] | ZHANG Z, WANG M, XIE D, et al. METTL3-mediated N6-methyladenosine mRNA modification enhances long-term memory consolidation[J]. Cell Res, 2018, 28(11):1050-1061. doi: 10.1038/s41422-018-0092-9. |
[7] | HESS M E, HESS S, MEYER K D, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry[J]. Nat Neurosci, 2013, 16(8):1042-1048. doi: 10.1038/nn.3449. |
[8] | MA C, CHANG M, LV H, et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum[J]. Genome Biol, 2018, 19(1):68. doi: 10.1186/s13059-018-1435-z. |
[9] | WALTERS B J, MERCALDO V, GILLON C J, et al. The role of the RNA demethylase FTO (fat mass and obesity-associated) and mRNA methylation in hippocampal memory formation[J]. Neuropsychopharmacology, 2017, 42(7):1502-1510. doi: 10.1038/npp.2017.31. |
[10] | WIDAGDO J, ZHAO Q Y, KEMPEN M J, et al. Experience-dependent accumulation of N6-methyladenosine in the prefrontal cortex is associated with memory processes in mice[J]. J Neurosci, 2016, 36(25):6771-6777. doi: 10.1523/JNEUROSCI.4053-15.2016. |
[11] | SUN H, ZHANG M, LI K, et al. Cap-specific,terminal N6-methylation by a mammalian m6Am methyltransferase[J]. Cell Res, 2019, 29(1):80-82. doi: 10.1038/s41422-018-0117-4. |
[12] | PANDEY R R, DELFINO E, HOMOLKA D, et al. The mammalian cap-specific m6Am RNA methyltransferase PCIF1 regulates transcript levels in mouse tissues[J]. Cell Rep, 2020, 32(7):108038. doi: 10.1016/j.celrep.2020.108038. |
[13] | AKICHIKA S, HIRANO S, SHICHINO Y, et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase[J]. Science, 2019, 363(6423):eaav0080. doi: 10.1126/science.aav0080. |
[14] | MAUER J, LUO X, BLANJOIE A, et al. Reversible methylation of m6A(m) in the 5' cap controls mRNA stability[J]. Nature, 2017, 541(7637):371-375. doi: 10.1038/nature21022. |
[15] | RELIER S, RIPOLL J, GUILLORIT H, et al. FTO-mediated cytoplasmic m6A(m) demethylation adjusts stem-like properties in colorectal cancer cell[J]. Nat Commun, 2021, 12(1):1716. doi: 10.1038/s41467-021-21758-4. |
[16] | SÁINZ-JASPEADO M, SMITH R O, PLUNDE O, et al. Palmdelphin regulates nuclear resilience to mechanical stress in the endothelium[J]. Circulation, 2021, 144(20):1629-1645. doi: 10.1161/CIRCULATIONAHA.121.054182. |
[17] | UHLÉN M, FAGERBERG L, HALLSTRÖM B M, et al. Proteomics. tissue-based map of the human proteome[J]. Science, 2015, 347(6220):1260419. doi: 10.1126/science.1260419. |
[18] | KANG H J, KAWASAWA Y I, CHENG F, et al. Spatio-temporal transcriptome of the human brain[J]. Nature, 2011, 478(7370):483-489. doi: 10.1038/nature10523. |
[19] | 陈力, 马亚丽, 李本亮. 外源性硫化氢通过Nrf2/ARE/HO-1通路对精神分裂症大鼠认知功能及肠道屏障功能的影响[J]. 天津医药, 2022, 50(2):143-149. |
CHEN L, MA Y L, LI B L. The effects of exogenous hydrogen sulfide on cognitive function and intestinal barrier function through Nrf2/ARE/HO-1 pathway in schizophrenic rats[J]. Tianjin Med J, 2022, 50(2):143-149. doi: 10.11958/20211303. | |
[20] | 栾宁, 刘丹, 刘畅, 等. LTBP2通过TLR4/NF-κB信号通路抑制糖尿病大鼠海马神经元凋亡[J]. 天津医药, 2021, 49(8):812-817. |
LUAN N, LIU D, LIU C, et al. LTBP2 inhibits apoptosis of hippocampal neurons through TLR4/NF-κB signaling pathway in diabetic rats[J]. Tianjin Med J, 2021, 49(8):812-817. doi: 10.11958/20203525. | |
[21] | CHEN J, BARDES E E, ARONOW B J, et al. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization[J]. Nucleic Acids Res, 2009, 37(Web Server issue):W305-311. doi: 10.1093/nar/gkp427. |
[22] | 谢冬冰, 孟建宇, 郭玉婷, 等. MK801对结肠癌细胞增殖、凋亡和迁移的影响[J]. 天津医药, 2016, 44(11):1334-1337. |
XIE D B, MENG J Y, GUO Y T, et al. Effects of MK801 on proliferation, apoptosis and migration of colorectal cancer cells[J]. Tianjin Med J, 2016, 44(11):1334-1337. doi: 10.11958/20160486. | |
[23] | SENDINC E, VALLE-GARCIA D, DHALL A, et al. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression[J]. Mol Cell, 2019, 75(3):620-630.e9. doi: 10.1016/j.molcel.2019.05.030. |
[24] | LIU J, LI K, CAI J, et al. Landscape and regulation of m6A and m6Am methylome across human and mouse tissues[J]. Mol Cell, 2020, 77(2):426-440.e6. doi: 10.1016/j.molcel.2019.09.032. |
[25] | WANG C X, CUI G S, LIU X, et al. METTL3-mediated m6A modification is required for cerebellar development[J]. PLoS Biol, 2018, 16(6):e2004880. doi: 10.1371/journal.pbio.2004880. |
[26] | MADUGALLE S U, MEYER K, WANG D O, et al. RNA N6-methyladenosine and the regulation of RNA localization and function in the brain[J]. Trends Neurosci, 2020, 43(12):1011-1023. doi: 10.1016/j.tins.2020.09.005. |
[27] | CHEN S, CHEN S T, SUN Y, et al. Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer's disease[J]. Redox Biol, 2019, 22:101133. doi: 10.1016/j.redox.2019.101133. |
[28] | SUN W, ZHAO J, LI C. Dexmedetomidine provides protection against hippocampal neuron apoptosis and cognitive impairment in mice with Alzheimer's disease by mediating the miR-129/YAP1/JAG1 axis[J]. Mol Neurobiol, 2020, 57(12):5044-5055. doi: 10.1007/s12035-020-02069-z. |
[29] | CHEN X, TONG G, FAN J, et al. FGF21 promotes migration and differentiation of epidermal cells during wound healing via SIRT1-dependent autophagy[J]. Br J Pharmacol, 2022, 179(5):1102-1121. doi: 10.1111/bph.15701. |
[30] | ZHOU Y, QIU L, WANG H, et al. Induction of activity synchronization among primed hippocampal neurons out of random dynamics is key for trace memory formation and retrieval[J]. FASEB J, 2020, 34(3):3658-3676. doi: 10.1096/fj.201902274R. |
[31] | KUNDU P, LEE H U, GARCIA-PEREZ I, et al. Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice[J]. Sci Transl Med, 2019, 11(518):eaau4760. doi: 10.1126/scitranslmed.aau4760. |
[1] | 钟玉梅, 周海燕, 张敏. ASIC1a介导类风湿关节炎软骨细胞损伤机制的研究进展[J]. 天津医药, 2024, 52(9): 1004-1008. |
[2] | 张晋玮, 王燕, 王通. miR-107对口腔鳞癌细胞系CAL27增殖、侵袭及迁移的影响[J]. 天津医药, 2024, 52(9): 897-899. |
[3] | 梁大敏, 杨正久, 张子萍, 钱静, 毛朝坤. 山萘酚逆转肝癌耐药细胞Bel-7402/5-Fu的作用机制研究[J]. 天津医药, 2024, 52(9): 900-906. |
[4] | 方杰, 黄芮, 郑红慧, 贾倩倩, 鲍静. miR-9-5p靶向TIMP2诱导多发性骨髓瘤细胞自噬和凋亡的机制[J]. 天津医药, 2024, 52(8): 785-790. |
[5] | 刘丹阳, 李永涛, 张海燕, 李林, 刘洋, 沈雷. 乳腺癌细胞条件培养基对骨髓间充质干细胞生物学行为的影响[J]. 天津医药, 2024, 52(5): 454-458. |
[6] | 李伟, 陈亮, 吕昌迎. circ_HIPK3靶向miR-381-3p/ZNF217轴调控Aβ诱导的海马神经元功能和形态[J]. 天津医药, 2024, 52(3): 237-244. |
[7] | 王扶凝, 代会博, 单云, 俞曼殊, 盛梅笑. 骨髓间充质干细胞对腹膜间皮细胞凋亡的影响[J]. 天津医药, 2024, 52(2): 113-118. |
[8] | 缪春波, 许迎春, 常以芳. 根皮苷通过下调miR-125a-5p减轻缺氧/复氧诱导的H9C2细胞氧化应激和凋亡[J]. 天津医药, 2024, 52(12): 1233-1238. |
[9] | 林瑶, 刘从娜, 王世霞, 张志勇. 金合欢素调节HMGB1/TLR4信号通路对脂多糖诱导牙髓细胞凋亡的影响[J]. 天津医药, 2024, 52(12): 1238-1243. |
[10] | 张贵婷, 何超. oxLDL/β2GPⅠ/aβ2GPⅠ复合物通过TLR4/MyD88/NF-κB途径促进血管内皮细胞血管生成[J]. 天津医药, 2024, 52(11): 1131-1136. |
[11] | 蔡灯塔, 常静宜, 贾姗姗, 屠荫琼. 罗沙司他通过抑制凋亡和炎症反应改善小鼠心肌缺血再灌注损伤[J]. 天津医药, 2024, 52(11): 1146-1151. |
[12] | 龙华, 陈怡霏, 王庆书. 瑞马唑仑调节TLR4/MyD88/NF-κB信号通路对烧伤大鼠肠上皮细胞凋亡的影响[J]. 天津医药, 2024, 52(11): 1152-1157. |
[13] | 徐芳, 梁毅, 何勇, 徐聚龙. 舒芬太尼调节JAK2/STAT3信号通路对烧伤脓毒症大鼠肝损伤的影响[J]. 天津医药, 2024, 52(11): 1158-1163. |
[14] | 郝凯凯, 王晓敏, 刘峥, 刘东洋, 李静. 藁本内酯调节RhoA/ROCK信号通路对食管癌细胞生物学行为的影响[J]. 天津医药, 2024, 52(11): 1164-1170. |
[15] | 孙创新, 李刚. NID1在肾透明细胞癌血管生成中的作用研究[J]. 天津医药, 2024, 52(10): 1009-1013. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||