[1] |
CHEN X, ZHOU X, YANG L, et al. Neonatal exposure to low-dose(1.2%)sevoflurane increases rats' hippocampal neurogenesis and synaptic plasticity in later life[J]. Neurotox Res, 2018, 34(2):188-197. doi: 10.1007/s12640-018-9877-3.
|
[2] |
ZUO Y, CHANG Y, THIRUPATHI A, et al. Prenatal sevoflurane exposure:Effects of iron metabolic dysfunction on offspring cognition and potential mechanism[J]. Int J Dev Neurosci, 2021, 81(1):1-9. doi: 10.1002/jdn.10080.
|
[3] |
YU Q, DAI H, JIANG Y, et al. Sevoflurane alleviates oxygen-glucose deprivation/reoxygenation-induced injury in HT22 cells through regulation of the PI3K/AKT/GSK3β signaling pathway[J]. Exp Ther Med, 202, 21(4):376. doi: 10.3892/etm.2021.9807.
|
[4] |
YANG Z, YUAN C. IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway[J]. BMC Anesthesiol, 2018, 18(1):147. doi: 10.1186/s12871-018-0607-4.
|
[5] |
SHARMA V K, SINGH T, SINGH S, et al. Apoptotic pathways and alzheimer's disease:probing therapeutic potential[J]. Neurochem Res, 2021, 46(12):3103-3122. doi: 10.1007/s11064-021-03418-7.
|
[6] |
VIGNESWARA V, AHMED Z. The role of Caspase-2 in regulating cell fate[J]. Cells, 2020, 9(5):1259. doi: 10.3390/cells9051259.
|
[7] |
OBENG E. Apoptosis(programmed cell death)and its signals - A review[J]. Braz J Biol, 2021, 81(4):1133-1143. doi: 10.1590/1519-6984.228437.
|
[8] |
LI M, GUO J, WANG H, et al. Involvement of mitochondrial dynamics and mitophagy in sevoflurane-Induced cell toxicity[J]. Oxid Med Cell Longev, 2021, 2021:6685468. doi: 10.1155/2021/6685468.
|
[9] |
MIRZAYANS R, ANDRAIS B, KUMAR P, et al. The growing complexity of cancer cell response to DNA-damaging agents:caspase 3 mediates cell death or survival?[J]. Int J Mol Sci, 2016, 17(5):708. doi: 10.3390/ijms17050708.
|
[10] |
KASHYAP D, GARG V K, GOEL N. Intrinsic and extrinsic pathways of apoptosis:Role in cancer development and prognosis[J]. Adv Protein Chem Struct Biol, 2021, 125:73-120. doi: 10.1016/bs.apcsb.2021.01.003.
|
[11] |
TANG W, WANG W, ZHANG Y, et al. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced chemokine release in both TRAIL-resistant and TRAIL-sensitive cells via nuclear factor kappa B[J]. FEBS J, 2009, 276(2):581-593. doi: 10.1111/j.1742-4658.2008.06809.x.
|
[12] |
魏海婷, 任峰, 刘琳琳, 等. TLR4-p38MAPK-NF-κB信号通路在七氟醚降低老龄大鼠认知功能中的作用[J]. 中华麻醉学杂志, 2019, 39(5):561-564.
|
|
WEI H T, REN F, LIU L L, et al. Role of TLR4-p38MAPK-NF-κB signaling pathway in sevoflurane-induced decrease in cognitive function of aged rats[J]. Chin J Anesthesiol, 2019, 39(5):561-564. doi: 10.3760/cma.j.issn.0254-1416.2019. 05.013.
|
[13] |
MAO J, HU Y, RUAN L, et al. Role of endoplasmic reticulum stress in depression (Review)[J]. Mol Med Rep, 2019, 20(6):4774-4780. doi: 10.3892/mmr.2019.10789.
|
[14] |
HAN Y, YUAN M, GUO Y S, et al. Mechanism of endoplasmic reticulum stress in cerebral ischemia[J]. Front Cell Neurosci, 2021, 15:704334. doi: 10.3389/fncel.2021.704334.
|
[15] |
LIU R, CHEN Y, LIU G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers[J]. Cell Death Dis, 2020, 11(9):797. doi: 10.1038/s41419-020-02998-6.
|
[16] |
SU R, SUN P, ZHANG D, et al. Neuroprotective effect of miR-410-3p against sevoflurane anesthesia-induced cognitive dysfunction in rats through PI3K/Akt signaling pathway via targeting C-X-C motif chemokine receptor 5[J]. Genes Genomics, 2019, 41(10):1223-1231. doi: 10.1007/s13258-019-00851-5.
|
[17] |
YANG L H, XU Y C, ZHANG W. Neuroprotective effect of CTRP3 overexpression against sevoflurane anesthesia-induced cognitive dysfunction in aged rats through activating AMPK/SIRT1 and PI3K/AKT signaling pathways[J]. Eur Rev Med Pharmacol Sci, 2020, 24(9):5091-5100. doi: 10.26355/eurrev_202005_21202.
|
[18] |
TIAN Y, GUO S, WU X, et al. Minocycline alleviates sevoflurane-induced cognitive impairment in aged rats[J]. Cell Mol Neurobiol, 2015, 35(4):585-594. doi: 10.1007/s10571-014-0154-6.
|
[19] |
HEPWORTH E, HINTON S D. Pseudophosphatases as regulators of MAPK signaling[J]. Int J Mol Sci, 2021, 22(22):12595. doi: 10.3390/ijms222212595.
|
[20] |
YUE J, LÓPEZ J M. Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci, 2020, 21(7):2346. doi: 10.3390/ijms21072346.
|
[21] |
WANG W W, JIA L J, LUO Y, et al. Location- and subunit-specific NMDA receptors determine the developmental sevoflurane neurotoxicity through ERK1/2 signaling[J]. Mol Neurobiol, 2016, 53(1):216-230. doi: 10.1007/s12035-014-9005-1.
|
[22] |
LIU T, DONG X, WANG B, et al. Silencing of PTEN inhibits the oxidative stress damage and hippocampal cell apoptosis induced by Sevoflurane through activating MEK1/ERK signaling pathway in infant rats[J]. Cell Cycle, 2020, 19(6):684-696. doi: 10.1080/15384101.2020.1717041.
|
[23] |
SONG H, XUN S, HE H, et al. Compound porcine cerebroside and ganglioside Injection (CPCGI) attenuates sevoflurane-induced nerve cell injury by regulating the phosphorylation of p38 MAP kinase (p38MAPK)/nuclear factor kappa B(NF-κB)pathway[J]. Med Sci Monit, 2020, 26:e919600. doi: 10.12659/MSM.919600.
|
[24] |
BI C, CAI Q, SHAN Y, et al. Sevoflurane induces neurotoxicity in the developing rat hippocampus by upregulating connexin 43 via the JNK/c-Jun/AP-1 pathway[J]. Biomed Pharmacother, 2018, 108:1469-1476. doi: 10.1016/j.biopha.2018.09.111.
|
[25] |
HANG P Z, GE F Q, LI P F, et al. The regulatory role of the BDNF/TrkB pathway in organ and tissue fibrosis[J]. Histol Histopathol, 2021, 36(11):1133-1143. doi: 10.14670/HH-18-368.
|
[26] |
ZHANG D, XUE B, YOU J, et al. Suberoylanilide hydroxamic acid reversed cognitive and synaptic plasticity impairments induced by sevoflurane exposure in adult mice[J]. Neuroreport, 2019, 30(4):274-279. doi: 10.1097/WNR.0000000000001196.
|
[27] |
ZHANG T, GUO Q, ZOU W, et al. Neonatal isoflurane exposure induces neurocognitive impairment and abnormal hippocampal histone acetylation in mice[J]. PLoS One, 2015, 10(4): e0125815. doi: 10.1371/journal.pone.0125815
|
[28] |
JIA J, ZHU J, YANG Q, et al. The role of histone acetylation in the sevoflurane-induced Inhibition of neurogenesis in the hippocampi of young mice[J]. Neuroscience, 2020, 432:73-83. doi: 10.1016/j.neuroscience.2020.02.023.
|
[29] |
XU Z, QIAN B. Sevoflurane anesthesia-mediated oxidative stress and cognitive impairment in hippocampal neurons of old rats can be ameliorated by expression of brain derived neurotrophic factor[J]. Neurosci Lett, 2020, 721:134785. doi: 10.1016/j.neulet.2020.134785.
|
[30] |
LIU C Y, ZHOU Y, CHEN T, et al. AMPK/SIRT1 pathway is involved in arctigenin-mediated protective effects against myocardial ischemia-reperfusion injury[J]. Front Pharmacol, 2021, 11:616813. doi: 10.3389/fphar.2020.616813.
|
[31] |
YANG X Y, LI Q J, ZHANG W C, et al. AMPK-SIRT1-PGC1α signal pathway influences the cognitive function of aged rats in sevoflurane-induced anesthesia[J]. J Mol Neurosci, 2020, 70(12):2058-2067. doi: 10.1007/s12031-020-01612-w.
|
[32] |
LIU L, LIU C, FANG L. AMPK‑SIRT1 pathway dysfunction contributes to neuron apoptosis and cognitive impairment induced by sevoflurane[J]. Mol Med Rep, 2021, 23(1):56. doi: 10.3892/mmr.2020.11694.
|
[33] |
YANG X, YANG S, HONG C, et al. Panax notoginseng saponins attenuates sevoflurane‑induced nerve cell injury by modulating AKT signaling pathway[J]. Mol Med Rep, 2017, 16(5):7829-7834. doi: 10.3892/mmr.2017.7519.
|
[34] |
WANG Y, WANG C, ZHANG Y, et al. Pre-administration of luteoline attenuates neonatal sevoflurane-induced neurotoxicity in mice[J]. Acta Histochem, 2019, 121(4):500-507. doi: 10.1016/j.acthis.2019.04.004.
|
[35] |
康文越, 邢丹丹, 付强, 等. 右美托咪定通过p38通路改善发育期大鼠七氟醚麻醉后认知功能障碍[J]. 中国免疫学杂志, 2020, 36(9):1091-1096.
|
|
KANG W Y, XING D D, FU Q, et al. Dexmedetomidine improves cognitive dysfunction after sevoflurane anesthesia in developing rats through p38 pathway[J]. Chinese Journal of Immunology, 2020, 36(9):1091-1096. doi: 10.3969/j.issn.1000-484X.2020.09.013.
|
[36] |
YUE H, HU B, LUO Z, et al. Metformin protects against sevoflurane-induced neuronal apoptosis through the S1P1 and ERK signaling pathways[J]. Exp Ther Med, 2019, 17(2):1463-1469. doi: 10.3892/etm.2018.7098.
|