天津医药 ›› 2023, Vol. 51 ›› Issue (10): 1090-1097.doi: 10.11958/20221976
收稿日期:
2022-12-02
修回日期:
2023-02-17
出版日期:
2023-10-15
发布日期:
2023-10-18
通讯作者:
∆E-mail:jueax516@163.com
作者简介:
王柯(1981),男,主治医师,主要从事膝关节骨性关节炎临床研究。E-mail:基金资助:
Received:
2022-12-02
Revised:
2023-02-17
Published:
2023-10-15
Online:
2023-10-18
Contact:
∆E-mail:jueax516@163.com
王柯, 叶寒露. 大黄素对膝骨关节炎大鼠软骨细胞铁死亡的影响及机制研究[J]. 天津医药, 2023, 51(10): 1090-1097.
WANG Ke, YE Hanlu. Effect and its mechanism of emodin on the ferroptosis of chondrocytes in rats with knee osteoarthritis[J]. Tianjin Medical Journal, 2023, 51(10): 1090-1097.
摘要:
目的 探讨大黄素对膝骨关节炎(KOA)大鼠软骨细胞铁死亡的影响及其机制。方法 96只SD大鼠分为假手术(Sham)组、KOA组、大黄素(EMO)组、大黄素+Nrf2抑制剂(EMO+ML385)组,每组24只,除Sham组外,其余组均采用改良Hulth法构建KOA模型。酶联免疫吸附试验(ELISA)检测血清肿瘤坏死因子-α(TNF-α)、一氧化氮(NO)、前列腺素E2(PGE2)水平;肉眼观察膝关节大体形态;番红O-固绿染色观察膝关节软骨组织病理形态学;原位末端标记(TUNEL)染色检测膝关节软骨细胞凋亡率;生化试剂盒检测膝关节软骨组织中丙二醛(MDA)、活性氧(ROS)、谷胱甘肽(GSH)、亚铁离子(Fe2+)水平;实时荧光定量PCR(qRT-PCR)、蛋白免疫印迹或免疫组化检测膝关节软骨组织中基质金属蛋白酶(MMP)-3、MMP-13、Ⅱ型胶原α1(COL2A1)、前列腺素内过氧化物合酶2(PTGS2)、谷胱甘肽过氧化物酶4(GPX4)、长链脂酰辅酶A合成酶4(ACSL4)、核因子E2相关因子2(Nrf2)、血红素加氧酶-1(HO-1)mRNA或蛋白表达。结果 与Sham组比较,KOA组大鼠血清TNF-α、NO、PGE2水平,膝关节软骨组织国际骨关节炎研究协会(OARSI)评分,细胞凋亡率,MMP-3、MMP-13、PTGS2 mRNA和蛋白表达,MDA、ROS、Fe2+水平,ACSL4阳性细胞比例和ACSL4、胞核Nrf2、HO-1蛋白表达升高,GSH水平、COL2A1 mRNA和蛋白表达、GPX4阳性细胞比例和GPX4、胞质Nrf2蛋白表达降低(P<0.05),关节软骨明显破坏。EMO可改善KOA大鼠炎症反应、膝关节软骨组织损伤和软骨细胞铁死亡,同时进一步激活Nrf2/HO-1信号通路,而ML385不仅抑制Nrf2/HO-1信号通路激活,还可减弱EMO对KOA大鼠膝关节软骨组织损伤和软骨细胞铁死亡的改善作用。结论 大黄素可激活Nrf2/HO-1信号通路,抑制KOA大鼠软骨细胞铁死亡,保护膝关节软骨。
中图分类号:
基因名称 | 引物序列 |
---|---|
MMP-3 | 上游:5′-TTTGGCCGTCTCTTCCATCC-3′ |
下游:5′-GCATCGATCTTCTGGACGGT-3′ | |
MMP-13 | 上游:5′-TTCTGGTCTTCTGGCACACG-3′ |
下游:5′-TGGAGCTGCTTGTCCAGGT-3′ | |
COL2A1 | 上游:5′-GGTAAGTGGGGCAAGACTGTTA-3′ |
下游:5′-TGTTGTTTCTGGGTTCAGGTTT-3′ | |
PTGS2 | 上游:5′-ATGTTCGCATTCTTTGCCCAG-3′ |
下游:5′-TACACCTCTCCACCGATGAC-3′ | |
GAPDH | 上游:5′-ATGACAACTCCCTCAAGAT-3′ |
下游:5′-GATCCACAACGGATACATT-3′ |
表1 引物序列
Tab.1 Primer sequence
基因名称 | 引物序列 |
---|---|
MMP-3 | 上游:5′-TTTGGCCGTCTCTTCCATCC-3′ |
下游:5′-GCATCGATCTTCTGGACGGT-3′ | |
MMP-13 | 上游:5′-TTCTGGTCTTCTGGCACACG-3′ |
下游:5′-TGGAGCTGCTTGTCCAGGT-3′ | |
COL2A1 | 上游:5′-GGTAAGTGGGGCAAGACTGTTA-3′ |
下游:5′-TGTTGTTTCTGGGTTCAGGTTT-3′ | |
PTGS2 | 上游:5′-ATGTTCGCATTCTTTGCCCAG-3′ |
下游:5′-TACACCTCTCCACCGATGAC-3′ | |
GAPDH | 上游:5′-ATGACAACTCCCTCAAGAT-3′ |
下游:5′-GATCCACAACGGATACATT-3′ |
组别 | TNF-α/(ng/L) | NO/(μg/L) | PGE2/(μg/L) |
---|---|---|---|
Sham组 | 48.97±6.38 | 30.64±4.19 | 0.23±0.06 |
KOA组 | 117.54±8.67a | 58.27±5.63a | 0.52±0.08a |
EMO组 | 69.85±7.52b | 37.52±4.56b | 0.31±0.06b |
EMO+ML385组 | 102.71±8.35c | 51.38±5.32c | 0.46±0.07c |
F | 127.745** | 51.816** | 30.789** |
表2 各组大鼠血清TNF-α、NO、PGE2水平比较 (n=8,$\bar{x}±s$)
Tab.2 Comparison of serum TNF-α, NO and PGE2 levels between the four groups of rats
组别 | TNF-α/(ng/L) | NO/(μg/L) | PGE2/(μg/L) |
---|---|---|---|
Sham组 | 48.97±6.38 | 30.64±4.19 | 0.23±0.06 |
KOA组 | 117.54±8.67a | 58.27±5.63a | 0.52±0.08a |
EMO组 | 69.85±7.52b | 37.52±4.56b | 0.31±0.06b |
EMO+ML385组 | 102.71±8.35c | 51.38±5.32c | 0.46±0.07c |
F | 127.745** | 51.816** | 30.789** |
图2 各组大鼠膝关节软骨组织病理形态学变化(番红O- 固绿染色,×200)
Fig.2 Pathological changes of knee joint cartilage tissue of rats in each group (safranine O-solid green staining, ×200)
组别 | OARSI评分/分 | 凋亡率/% |
---|---|---|
Sham组 | 1.46±0.31 | 4.34±0.62 |
KOA组 | 6.50±0.69a | 21.17±3.74a |
EMO组 | 3.64±0.45b | 8.26±1.45b |
EMO+ML385组 | 5.78±0.52c | 17.58±2.67c |
F | 158.438** | 83.641** |
表3 各组大鼠膝关节软骨OARSI评分和软骨细胞凋亡率比较 (n=8,$\bar{x}±s$)
Tab.3 Comparison of OARSI score of knee joint cartilage and apoptosis rate of chondrocytes between the four groups of rats
组别 | OARSI评分/分 | 凋亡率/% |
---|---|---|
Sham组 | 1.46±0.31 | 4.34±0.62 |
KOA组 | 6.50±0.69a | 21.17±3.74a |
EMO组 | 3.64±0.45b | 8.26±1.45b |
EMO+ML385组 | 5.78±0.52c | 17.58±2.67c |
F | 158.438** | 83.641** |
组别 | MMP-3 | MMP-13 | COL2A1 | PTGS2 |
---|---|---|---|---|
Sham组 | 0.98±0.09 | 1.01±0.10 | 1.00±0.08 | 1.02±0.09 |
KOA组 | 3.52±0.13a | 2.73±0.11a | 0.39±0.06a | 3.68±0.12a |
EMO组 | 2.16±0.10b | 1.85±0.12b | 0.75±0.08b | 1.54±0.08b |
EMO+ML385组 | 3.04±0.12c | 2.30±0.13c | 0.48±0.07c | 3.07±0.11c |
F | 806.586** | 324.090** | 114.629** | 1 225.437** |
表4 各组大鼠膝关节软骨组织中MMP-3、MMP-13、COL2A1、PTGS2 mRNA相对表达水平比较 (n=8,$\bar{x}±s$)
Tab.4 Comparison of MMP-3, MMP-13, COL2A1 and PTGS2 mRNA relative expression levels in knee joint cartilage between the four groups of rats
组别 | MMP-3 | MMP-13 | COL2A1 | PTGS2 |
---|---|---|---|---|
Sham组 | 0.98±0.09 | 1.01±0.10 | 1.00±0.08 | 1.02±0.09 |
KOA组 | 3.52±0.13a | 2.73±0.11a | 0.39±0.06a | 3.68±0.12a |
EMO组 | 2.16±0.10b | 1.85±0.12b | 0.75±0.08b | 1.54±0.08b |
EMO+ML385组 | 3.04±0.12c | 2.30±0.13c | 0.48±0.07c | 3.07±0.11c |
F | 806.586** | 324.090** | 114.629** | 1 225.437** |
组别 | MDA/(μmol/g) | ROS | GSH/(μmol/g) | Fe2+/(mg/g) |
---|---|---|---|---|
Sham组 | 3.41±0.48 | 1.00±0.00 | 7.98±0.75 | 0.26±0.06 |
KOA组 | 8.96±0.65a | 3.68±0.37a | 3.61±0.49a | 0.64±0.08a |
EMO组 | 5.37±0.54b | 1.95±0.26b | 6.37±0.64b | 0.41±0.07b |
EMO+ ML385组 | 8.02±0.66c | 3.07±0.31c | 4.29±0.56c | 0.58±0.06c |
F | 148.183** | 150.714** | 83.386** | 51.128** |
表5 各组大鼠膝关节软骨组织中MDA、ROS、GSH、Fe2+水平比较 (n=8,$\bar{x}±s$)
Tab.5 Comparison of MDA, ROS, GSH and Fe2+ levels in knee joint cartilage of rats between the four groups
组别 | MDA/(μmol/g) | ROS | GSH/(μmol/g) | Fe2+/(mg/g) |
---|---|---|---|---|
Sham组 | 3.41±0.48 | 1.00±0.00 | 7.98±0.75 | 0.26±0.06 |
KOA组 | 8.96±0.65a | 3.68±0.37a | 3.61±0.49a | 0.64±0.08a |
EMO组 | 5.37±0.54b | 1.95±0.26b | 6.37±0.64b | 0.41±0.07b |
EMO+ ML385组 | 8.02±0.66c | 3.07±0.31c | 4.29±0.56c | 0.58±0.06c |
F | 148.183** | 150.714** | 83.386** | 51.128** |
组别 | GPX4 | ACSL4 |
---|---|---|
Sham组 | 83.21±7.54 | 28.64±6.38 |
KOA组 | 42.16±6.89a | 69.31±8.14a |
EMO组 | 71.39±8.43b | 40.52±7.03b |
EMO+ML385组 | 50.98±7.85c | 58.26±7.69c |
F | 47.394** | 48.728** |
表6 各组大鼠膝关节软骨组织中GPX4、ACSL4阳性细胞比例比较 (n=8,%,$\bar{x}±s$)
Tab.6 Comparison of the proportion of GPX4 and ACSL4 positive cells in knee joint cartilage between the four groups of rats
组别 | GPX4 | ACSL4 |
---|---|---|
Sham组 | 83.21±7.54 | 28.64±6.38 |
KOA组 | 42.16±6.89a | 69.31±8.14a |
EMO组 | 71.39±8.43b | 40.52±7.03b |
EMO+ML385组 | 50.98±7.85c | 58.26±7.69c |
F | 47.394** | 48.728** |
图4 各组大鼠膝关节软骨组织中GPX4、ACSL4阳性表达情况(免疫组化染色,×200)
Fig.4 Positive expression of GPX4 and ACSL4 in knee joint cartilage of rats in each group (immunohistochemistry staining, ×200)
图5 各组大鼠膝关节软骨组织中MMP-3、MMP-13、COL2A1、PTGS2蛋白表达
Fig.5 Protein expression of MMP-3, MMP-13, COL2A1 and PTGS2 in knee joint cartilage of rats in each group
组别 | MMP-3 | MMP-13 | COL2A1 | PTGS2 |
---|---|---|---|---|
Sham组 | 0.23±0.04 | 0.29±0.05 | 0.79±0.05 | 0.19±0.04 |
KOA组 | 0.85±0.06a | 0.93±0.06a | 0.38±0.04a | 0.72±0.05a |
EMO组 | 0.34±0.05b | 0.42±0.05b | 0.71±0.05b | 0.28±0.04b |
EMO+ML385组 | 0.72±0.06c | 0.84±0.06c | 0.46±0.04c | 0.53±0.06c |
F | 249.676** | 256.525** | 149.984** | 199.799** |
表7 各组大鼠膝关节软骨组织中MMP-3、MMP-13、COL2A1、PTGS2蛋白相对表达水平比较 (n=8,$\bar{x}±s$)
Tab.7 Comparison of the protein relative expression levels of MMP-3, MMP-13, COL2A1 and PTGS2 in knee joint cartilage between the four groups of rats
组别 | MMP-3 | MMP-13 | COL2A1 | PTGS2 |
---|---|---|---|---|
Sham组 | 0.23±0.04 | 0.29±0.05 | 0.79±0.05 | 0.19±0.04 |
KOA组 | 0.85±0.06a | 0.93±0.06a | 0.38±0.04a | 0.72±0.05a |
EMO组 | 0.34±0.05b | 0.42±0.05b | 0.71±0.05b | 0.28±0.04b |
EMO+ML385组 | 0.72±0.06c | 0.84±0.06c | 0.46±0.04c | 0.53±0.06c |
F | 249.676** | 256.525** | 149.984** | 199.799** |
组别 | GPX4 | ACSL4 | HO-1 | 胞质Nrf2 | 胞核Nrf2 |
---|---|---|---|---|---|
Sham组 | 0.82±0.05 | 0.12±0.03 | 0.46±0.04 | 0.89±0.05 | 0.17±0.03 |
KOA组 | 0.36±0.04a | 0.39±0.05a | 0.58±0.05a | 0.74±0.07a | 0.29±0.05a |
EMO组 | 0.72±0.06b | 0.20±0.04b | 1.13±0.06b | 0.23±0.05b | 0.94±0.06b |
EMO+ML385组 | 0.43±0.05c | 0.31±0.05c | 0.71±0.05c | 0.56±0.06c | 0.49±0.05c |
F | 154.850** | 60.444** | 267.085** | 191.289** | 385.881** |
表8 各组大鼠膝关节软骨组织中GPX4、ACSL4、Nrf2、HO-1蛋白相对表达水平比较 (n=8,$\bar{x}±s$)
Tab.8 Comparison of the protein relative expression levels of GPX4, ACSL4, Nrf2 and HO-1 in knee joint cartilage of rats between the four groups
组别 | GPX4 | ACSL4 | HO-1 | 胞质Nrf2 | 胞核Nrf2 |
---|---|---|---|---|---|
Sham组 | 0.82±0.05 | 0.12±0.03 | 0.46±0.04 | 0.89±0.05 | 0.17±0.03 |
KOA组 | 0.36±0.04a | 0.39±0.05a | 0.58±0.05a | 0.74±0.07a | 0.29±0.05a |
EMO组 | 0.72±0.06b | 0.20±0.04b | 1.13±0.06b | 0.23±0.05b | 0.94±0.06b |
EMO+ML385组 | 0.43±0.05c | 0.31±0.05c | 0.71±0.05c | 0.56±0.06c | 0.49±0.05c |
F | 154.850** | 60.444** | 267.085** | 191.289** | 385.881** |
[1] | KATZ J N, ARANT K R, LOESER R F. Diagnosis and treatment of hip and knee osteoarthritis:A review[J]. JAMA, 2021, 325(6):568-578. doi:10.1001/jama.2020.22171. |
[2] | 李远栋, 杨琨, 王平, 等. 中药基于Wnt/β-catenin信号通路治疗膝骨性关节炎的研究进展[J]. 中草药, 2021, 52(21):6717-6723. |
LI Y D, YANG K, WANG P, et al. Research progress on mechanism of traditional Chinese medicine against knee osteoarthritis based on Wnt/β-catenin signaling pathway[J]. Chin Tradit Herbal Drugs, 2021, 52(21):6717-6723. doi:10.7501/j.issn.0253-2670.2021.21.030. | |
[3] | HU H, SONG X, LI Y, et al. Emodin protects knee joint cartilage in rats through anti-matrix degradation pathway:An in vitro and in vivo study[J]. Life Sci, 2021, 269:119001. doi:10.1016/j.lfs.2020.119001. |
[4] | 海云翔, 巩彦龙, 宋敏, 等. 细胞程序性死亡在骨质疏松症中的研究进展[J]. 中国骨质疏松杂志, 2023, 29(1):89-94. |
HAI Y X, GONG Y L, SONG M, et al. Effect of the programmed cell death of osteocyte on osteoporosis[J]. Chin J Osteoporos, 2023, 29(1):89-94. doi:10.3969/j.issn.1006-7108.2023.01.017. | |
[5] | GUO Z, LIN J, SUN K, et al. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway[J]. Front Pharmacol, 2022, 13:791376. doi:10.3389/fphar.2022.791376. |
[6] | 张昊悦, 赵蓓, 王业皇, 等. 大黄素通过调节Nrf2/HO-和MAPKs抑制炎症和氧化应激机制研究[J]. 中国免疫学杂志, 2021, 37(9):1063-1068. |
ZHANG H Y, ZHAO B, WANG Y H, et al. Emodin inhibits inflammation and oxidative stress by regulating Nrf2/HO-1 and MAPKs[J]. Chin J Immunol, 2021, 37(9):1063-1068. doi:10.3969/j.issn.1000-484X.2021.09.008. | |
[7] | 吴强, 郑倩华, 蒋一璐, 等. 膝骨性关节炎动物模型选择与制备的比较[J]. 中国比较医学杂志, 2019, 29(5):125-130. |
WU Q, ZHENG Q H, JIANG Y L, et al. Comparison of selection and preparation of animal models of knee osteoarthritis[J]. Chin J Comp Med, 2019, 29(5):125-130. doi:10.3969/j.issn.1671-7856.2019.05.020. | |
[8] | GAO Z, SUI J, FAN R, et al. Emodin protects against acute pancreatitis-associated lung injury by inhibiting NLPR3 inflammasome activation via Nrf2/HO-1 signaling[J]. Drug Des Devel Ther, 2020, 14:1971-1982. doi:10.2147/DDDT.S247103. |
[9] | BANNURU R R, OSANI M C, VAYSBROT E E, et al. OARSI guidelines for the non-surgical management of knee,hip,and polyarticular osteoarthritis[J]. Osteoarthritis Cartilage, 2019, 27(11):1578-1589. doi:10.1016/j.joca.2019.06.011. |
[10] | JANG S, LEE K, JU J H. Recent updates of diagnosis,pathophysiology,and treatment on osteoarthritis of the knee[J]. Int J Mol Sci, 2021, 22(5):2619. doi:10.3390/ijms22052619. |
[11] | DING Q H, YE C Y, CHEN E M, et al. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-κB and Wnt/β-catenin signaling in-vitro and in-vivo[J]. Int Immunopharmacol, 2018, 61:222-230. doi:10.1016/j.intimp.2018.05.026. |
[12] | LIU Z, LANG Y, LI L, et al. Effect of emodin on chondrocyte viability in an in vitro model of osteoarthritis[J]. Exp Ther Med, 2018, 16(6):5384-5389. doi:10.3892/etm.2018.6877. |
[13] | LIAO H, ZHANG Z, LIU Z, et al. Inhibited microRNA-218-5p attenuates synovial inflammation and cartilage injury in rats with knee osteoarthritis by promoting sclerostin[J]. Life Sci, 2021, 267:118893. doi:10.1016/j.lfs.2020.118893. |
[14] | GUAN T, DING L G, LU B Y, et al. Combined administration of curcumin and chondroitin sulfate alleviates cartilage injury and inflammation via NF-κB pathway in knee osteoarthritis rats[J]. Front Pharmacol, 2022, 13:882304. doi:10.3389/fphar.2022.882304. |
[15] | YAO X, SUN K, YU S, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis[J]. J Orthop Translat, 2020, 27:33-43. doi:10.1016/j.jot.2020.09.006. |
[16] | HU Z, YIN Y, JIANG J, et al. Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression[J]. J Gastrointest Oncol, 2022, 13(2):754-767. doi:10.21037/jgo-21-916. |
[17] | 李哲, 袁长深, 官岩兵, 等. 骨关节炎中铁死亡的生物信息学分析与实验验证[J]. 中国组织工程研究, 2023, 27(17):2637-2643. |
LI Z, YUAN C S, GUAN Y B, et al. Bioinformatic analysis and experimental validation of ferroptosis in osteoarthritis[J]. Chin J Tissue Engin Res, 2023, 27(17):2637-2643. doi:org/10.12307/2023.437. | |
[18] | WANG Z, EFFERTH T, HUA X, et al. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis:A systematic review[J]. Phytomedicine, 2022, 105:154347. doi:10.1016/j.phymed.2022.154347. |
[19] | ZHANG J, LIU L, LI F, et al. Treatment with catalpol protects against cisplatin-induced renal injury through Nrf2 and NF-κB signaling pathways[J]. Exp Ther Med, 2020, 20(4):3025-3032. doi:10.3892/etm.2020.9077. |
[20] | BUSA P, LEE S O, HUANG N, et al. Carnosine alleviates knee osteoarthritis and promotes synoviocyte protection via activating the Nrf2/HO-1 signaling pathway: An in-vivo and in-vitro study[J]. Antioxidants (Basel), 2022, 11(6):1209. doi:10.3390/antiox11061209. |
[21] | MA H, WANG X, ZHANG W, et al. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis[J]. Oxid Med Cell Longev, 2020, 2020:9067610. doi:10.1155/2020/9067610. |
[22] | SHANG L, LIU Y, LI J, et al. Emodin protects sepsis associated damage to the intestinal mucosal barrier through the VDR/Nrf2/HO-1 pathway[J]. Front Pharmacol, 2021, 12:724511. doi:10.3389/fphar.2021.724511. |
[23] | WU H, LUAN Y, WANG H, et al. Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of BTBR mice by regulating the Nrf2/GPx4 pathway[J]. Brain Res Bull, 2022, 183:38-48. doi:10.1016/j.brainresbull.2022.02.018. |
[1] | 钟玉梅, 周海燕, 张敏. ASIC1a介导类风湿关节炎软骨细胞损伤机制的研究进展[J]. 天津医药, 2024, 52(9): 1004-1008. |
[2] | 张春虹, 黄洪超, 刘越, 杜立龙, 许海委, 黎宁, 李勇进. 基于RNA测序和生物信息学分析鉴定椎旁肌退变中关键的铁死亡基因[J]. 天津医药, 2024, 52(9): 991-995. |
[3] | 刘斌, 杨龙, 李文莉, 邵宁宁, 董津睿. 小胶质细胞铁死亡在烟雾吸入性脑损伤中的作用机制探讨[J]. 天津医药, 2024, 52(8): 791-797. |
[4] | 王欣爽, 安亚娟, 管秀菊, 李娇, 刘玥, 魏丽萍, 齐新. 异甘草酸镁改善顺铂诱导的大鼠心肌损伤[J]. 天津医药, 2024, 52(8): 809-814. |
[5] | 林峰, 陈铃雄, 刘羽, 张旭明, 尹志达, 林坛辉, 刘尊荣. 紫杉醇涂层球囊治疗2型糖尿病膝下动脉严重病变患者发生远期再狭窄预测模型的构建[J]. 天津医药, 2024, 52(8): 830-834. |
[6] | 袁满, 冯子瀚, 谢敏, 王柏军. 大黄素对骨关节炎模型小鼠痛觉行为的调节机制[J]. 天津医药, 2024, 52(6): 572-577. |
[7] | 罗锟, 王智, 王柯. 山姜素调节VEGF/SphK1/S1P信号通路对膝骨关节炎大鼠血管生成的影响[J]. 天津医药, 2024, 52(5): 480-485. |
[8] | 初吉燕, 田竞, 付笛语, 郭琳, 孙蕊, 李萍. AIM2炎症小体在急性痛风性关节炎中的表达及意义[J]. 天津医药, 2024, 52(5): 518-522. |
[9] | 韩正怡, 李锐, 陈齐, 王家友, 盛奎, 宋洁, 张野. 收肌管阻滞联合全麻对老年全膝关节置换术患者术后疼痛和认知功能的影响[J]. 天津医药, 2024, 52(5): 523-527. |
[10] | 王柯, 叶寒露. 隐丹参酮调节HIF-1α/BNIP3信号通路对兔膝骨关节炎模型软骨细胞自噬和凋亡的影响[J]. 天津医药, 2024, 52(4): 372-378. |
[11] | 乔坤艳, 刘韦娜, 郑晓雅, 苏瑞, 杨悦杰. 布鲁氏菌病患者外周血白细胞及血小板参数的变化及临床意义[J]. 天津医药, 2024, 52(4): 391-396. |
[12] | 许文静, 高冬梅, 李慧心, 王莉, 佟胜全. 类风湿关节炎患者血清脂肪因子趋化素与疾病活动度和Th17/Treg的关系[J]. 天津医药, 2024, 52(2): 193-196. |
[13] | 邓雯雯, 孟祥虹, 孙振业, 杨奇龙, 王植. 膝内翻对膝骨关节炎股胫内外侧间室骨密度影响的QCT分析[J]. 天津医药, 2024, 52(12): 1291-1295. |
[14] | 黄晓蕾, 葛婷婷, 赵俊松, 倪志华. 人参皂苷Rg1在IL-6诱导的大鼠神经元铁死亡中的作用[J]. 天津医药, 2024, 52(11): 1137-1140. |
[15] | 刘国旗, 李程程, 刘声菊, 朱丽英. 大黄素调控组蛋白乙酰化促进HpG2肝癌细胞焦亡及凋亡的发生[J]. 天津医药, 2024, 52(1): 56-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||