天津医药 ›› 2024, Vol. 52 ›› Issue (1): 73-79.doi: 10.11958/20230179
收稿日期:
2023-08-04
出版日期:
2024-01-15
发布日期:
2024-01-18
作者简介:
杨阳(1988),女,讲师,主要从事生理学方面研究。E-mail:基金资助:
Received:
2023-08-04
Published:
2024-01-15
Online:
2024-01-18
杨阳, 何巧玉. 丹酚酸B对创伤后应激障碍模型大鼠认知功能和GSK-3β/β-Catenin信号通路的影响[J]. 天津医药, 2024, 52(1): 73-79.
YANG Yang, HE Qiaoyu. Impact of salvianolic acid B on cognitive function and GSK-3β/β-Catenin signaling pathway in rats with post-traumatic stress disorder[J]. Tianjin Medical Journal, 2024, 52(1): 73-79.
摘要:
目的 探讨丹酚酸B(Sal B)是否可通过调节糖原合成酶激酶-3β/β-连环蛋白(GSK-3β/β-Catenin)信号通路改善创伤后应激障碍(PTSD)模型大鼠认知功能。方法 60只大鼠随机分为正常组、PTSD组、Sal B低剂量组(10 mg/kg)、Sal B高剂量组(20 mg/kg)和GSK-3β抑制剂组(30 mg/kg CHIR-99021),每组12只。除正常组外,其余组大鼠采用单一延长应激法构建PTSD大鼠模型。旷场实验、Morris水迷宫实验评估大鼠认知功能;Nissl染色观察海马神经元病理学变化;TUNEL染色检测海马神经元凋亡;Western blot检测海马组织中裂解的胱天蛋白酶3(cleaved caspase-3)、B细胞淋巴瘤基因-2相关X蛋白(Bax)、原癌基因(c-Myc)、细胞周期蛋白D1(Cyclin D1)、总GSK-3β(t-GSK-3β)、磷酸化GSK-3β(p-GSK-3β)、总β-Catenin(t-β-Catenin)、磷酸化β-Catenin(p-β-Catenin)蛋白表达。结果 与PTSD组比较,Sal B低剂量组、Sal B高剂量组和GSK-3β抑制剂组大鼠爬行格数、站立次数、运动总距离、跨越原平台次数增多,逃避潜伏期、首次跨越原平台时间缩短,海马神经元凋亡率以及海马组织中Bax、cleaved caspase-3、t-GSK-3β、p-β-Catenin蛋白表达水平降低,Cyclin D1、c-Myc、p-GSK-3β、t-β-Catenin蛋白表达水平升高(P<0.05)。结论 Sal B能够减轻PTSD模型大鼠海马神经元凋亡、损伤并可改善其认知功能障碍,抑制GSK-3β/β-Catenin信号通路。
中图分类号:
组别 | 爬行格数/个 | 站立次数/次 | 运动总距离/cm |
---|---|---|---|
正常组 | 76.33±4.68 | 14.25±1.46 | 2 436.18±90.29 |
PTSD组 | 48.21±3.95a | 5.17±0.85a | 1 059.67±52.43a |
Sal B低剂量组 | 61.83±4.40b | 9.08±1.02b | 1 836.29±71.85b |
Sal B高剂量组 | 72.50±4.06bc | 12.47±1.25bc | 2 345.35±83.86bc |
GSK-3β抑制剂组 | 69.58±4.12bc | 11.67±1.18bc | 2 308.42±89.27bc |
F | 82.233** | 108.915** | 635.255** |
表1 各组大鼠旷场实验中爬行格数、站立次数和运动总距离比较
Tab.1 Comparison of the number of crawling cells, standing times and total distance of exercise in open field experiment between the five groups of rats (n=12,$\bar{x}±s$)
组别 | 爬行格数/个 | 站立次数/次 | 运动总距离/cm |
---|---|---|---|
正常组 | 76.33±4.68 | 14.25±1.46 | 2 436.18±90.29 |
PTSD组 | 48.21±3.95a | 5.17±0.85a | 1 059.67±52.43a |
Sal B低剂量组 | 61.83±4.40b | 9.08±1.02b | 1 836.29±71.85b |
Sal B高剂量组 | 72.50±4.06bc | 12.47±1.25bc | 2 345.35±83.86bc |
GSK-3β抑制剂组 | 69.58±4.12bc | 11.67±1.18bc | 2 308.42±89.27bc |
F | 82.233** | 108.915** | 635.255** |
组别 | 1 d | 2 d |
---|---|---|
正常组 | 31.59±4.42 | 23.47±4.03 |
PTSD组 | 75.64±6.83a | 70.95±6.92a |
Sal B低剂量组 | 56.78±5.97b | 49.26±5.84b |
Sal B高剂量组 | 43.15±5.62bc | 35.24±5.16bc |
GSK-3β抑制剂组 | 46.06±4.98bc | 37.58±5.34bc |
F | 104.545** | 126.256** |
组别 | 3 d | 4 d |
正常组 | 15.26±3.15 | 8.95±2.64 |
PTSD组 | 67.08±6.54a | 61.24±6.71a |
Sal B低剂量组 | 41.65±5.23b | 33.17±4.38b |
Sal B高剂量组 | 30.57±4.31bc | 24.97±3.97bc |
GSK-3β抑制剂组 | 33.19±4.58bc | 27.12±3.65bc |
F | 182.284** | 217.942** |
表2 各组大鼠Morris水迷宫实验中逃避潜伏期比较
Tab.2 Comparison of escape latency in Morris water maze experiment between the five groups of rats (n=12,s,$\bar{x}±s$)
组别 | 1 d | 2 d |
---|---|---|
正常组 | 31.59±4.42 | 23.47±4.03 |
PTSD组 | 75.64±6.83a | 70.95±6.92a |
Sal B低剂量组 | 56.78±5.97b | 49.26±5.84b |
Sal B高剂量组 | 43.15±5.62bc | 35.24±5.16bc |
GSK-3β抑制剂组 | 46.06±4.98bc | 37.58±5.34bc |
F | 104.545** | 126.256** |
组别 | 3 d | 4 d |
正常组 | 15.26±3.15 | 8.95±2.64 |
PTSD组 | 67.08±6.54a | 61.24±6.71a |
Sal B低剂量组 | 41.65±5.23b | 33.17±4.38b |
Sal B高剂量组 | 30.57±4.31bc | 24.97±3.97bc |
GSK-3β抑制剂组 | 33.19±4.58bc | 27.12±3.65bc |
F | 182.284** | 217.942** |
组别 | 跨越原平台 次数/次 | 首次跨越原 平台时间/s |
---|---|---|
正常组 | 9.25±1.38 | 10.68±1.29 |
PTSD组 | 3.42±0.85a | 39.45±3.18a |
Sal B低剂量组 | 4.83±0.96b | 27.84±2.86b |
Sal B高剂量组 | 7.67±1.25bc | 19.07±1.95bc |
GSK-3β抑制剂组 | 7.00±1.04bc | 21.31±2.42bc |
F | 51.921** | 233.936** |
表3 各组大鼠Morris水迷宫实验中跨越原平台次数和首次跨越原平台时间比较
Tab.3 Comparison of the times of crossing the original platform and the time of crossing the original platform for the first time in Morris water maze experiment between the five groups of rats (n=12,$\bar{x}±s$)
组别 | 跨越原平台 次数/次 | 首次跨越原 平台时间/s |
---|---|---|
正常组 | 9.25±1.38 | 10.68±1.29 |
PTSD组 | 3.42±0.85a | 39.45±3.18a |
Sal B低剂量组 | 4.83±0.96b | 27.84±2.86b |
Sal B高剂量组 | 7.67±1.25bc | 19.07±1.95bc |
GSK-3β抑制剂组 | 7.00±1.04bc | 21.31±2.42bc |
F | 51.921** | 233.936** |
图3 Western blot检测各组大鼠海马组织中Bax、cleaved caspase-3蛋白表达 A:正常组;B:PTSD组;C:Sal B低剂量组;D:Sal B高剂量组;E:GSK-3β抑制剂组。
Fig.3 The expression of Bax and cleaved caspase-3 protein in hippocampus of each group detected by Western blot assay
组别 | 神经元凋亡率/ % | Bax | cleaved caspase-3 |
---|---|---|---|
正常组 | 5.89±0.96 | 0.18±0.04 | 0.27±0.05 |
PTSD组 | 57.26±7.85a | 0.79±0.06a | 0.92±0.08a |
Sal B低剂量组 | 32.17±5.43b | 0.51±0.06b | 0.63±0.06b |
Sal B高剂量组 | 20.42±2.56bc | 0.29±0.05bc | 0.41±0.05bc |
GSK-3β抑制剂组 | 22.05±3.18bc | 0.32±0.06bc | 0.45±0.07bc |
F | 100.345** | 115.510** | 94.342** |
表4 各组大鼠海马神经元凋亡率以及海马组织中Bax、cleaved caspase-3蛋白表达水平比较
Tab.4 Comparison of apoptosis rate of hippocampal neurons and expression levels of Bax and cleaved caspase-3 in hippocampal tissue between the five groups of rats (n=6,$\bar{x}±s$)
组别 | 神经元凋亡率/ % | Bax | cleaved caspase-3 |
---|---|---|---|
正常组 | 5.89±0.96 | 0.18±0.04 | 0.27±0.05 |
PTSD组 | 57.26±7.85a | 0.79±0.06a | 0.92±0.08a |
Sal B低剂量组 | 32.17±5.43b | 0.51±0.06b | 0.63±0.06b |
Sal B高剂量组 | 20.42±2.56bc | 0.29±0.05bc | 0.41±0.05bc |
GSK-3β抑制剂组 | 22.05±3.18bc | 0.32±0.06bc | 0.45±0.07bc |
F | 100.345** | 115.510** | 94.342** |
图4 Western blot检测各组大鼠海马组织中Cyclin D1、c-Myc蛋白表达 A:正常组;B:PTSD组;C:Sal B低剂量组;D:Sal B高剂量组;E:GSK-3β抑制剂组。
Fig.4 The expression of Cyclin D1 and c-Myc protein in hippocampal tissue of rats in each group detected by Western blot assay
组别 | Cyclin D1 | c-Myc |
---|---|---|
正常组 | 0.69±0.06 | 0.57±0.05 |
PTSD组 | 0.23±0.04a | 0.18±0.03a |
Sal B低剂量组 | 0.40±0.05b | 0.35±0.03b |
Sal B高剂量组 | 0.54±0.05bc | 0.46±0.04bc |
GSK-3β抑制剂组 | 0.51±0.06bc | 0.42±0.05bc |
F | 63.761** | 74.750** |
表5 各组大鼠海马组织中c-Myc、Cyclin D1蛋白表达水平比较
Tab.5 Comparison of protein expression levels of c-Myc and Cyclin D1 in hippocampal tissue between the five groups of rats (n=6,$\bar{x}±s$)
组别 | Cyclin D1 | c-Myc |
---|---|---|
正常组 | 0.69±0.06 | 0.57±0.05 |
PTSD组 | 0.23±0.04a | 0.18±0.03a |
Sal B低剂量组 | 0.40±0.05b | 0.35±0.03b |
Sal B高剂量组 | 0.54±0.05bc | 0.46±0.04bc |
GSK-3β抑制剂组 | 0.51±0.06bc | 0.42±0.05bc |
F | 63.761** | 74.750** |
图5 Western blot检测各组大鼠海马组织中t-GSK-3β、p-GSK-3β、t-β-Catenin、p-β-Catenin蛋白表达情况 A:正常组;B:PTSD组;C:Sal B低剂量组;D:Sal B高剂量组;E:GSK-3β抑制剂组。
Fig.5 The expression of t-GSK-3β, p-GSK-3β, t-β-Catenin and p-β-Catenin in hippocampal tissue of rats in each group detected by Western blot assay
组别 | t-GSK- 3β | p-GSK- 3β | t-β- Catenin | p-β- Catenin |
---|---|---|---|---|
正常组 | 0.15±0.03 | 0.61±0.05 | 0.79±0.05 | 0.18±0.03 |
PTSD组 | 0.78±0.06a | 0.18±0.03a | 0.23±0.04a | 0.67±0.06a |
Sal B低剂量组 | 0.54±0.05b | 0.35±0.04b | 0.51±0.05b | 0.49±0.05b |
Sal B高剂量组 | 0.37±0.04bc | 0.45±0.04bc | 0.65±0.05bc | 0.35±0.04bc |
GSK-3β抑制 剂组 | 0.34±0.04bc | 0.47±0.05bc | 0.66±0.06bc | 0.33±0.05bc |
F | 165.088** | 83.802** | 107.528** | 92.378** |
表6 各组大鼠海马组织中t-GSK-3β、p-GSK-3β、t-β-Catenin、p-β-Catenin蛋白表达水平比较
Tab.6 Comparison of protein expression levels of t-GSK-3β, p-GSK-3β, t-β-Catenin and p-β-Catenin in hippocampal tissue between the five groups of rats (n=6,$\bar{x}±s$)
组别 | t-GSK- 3β | p-GSK- 3β | t-β- Catenin | p-β- Catenin |
---|---|---|---|---|
正常组 | 0.15±0.03 | 0.61±0.05 | 0.79±0.05 | 0.18±0.03 |
PTSD组 | 0.78±0.06a | 0.18±0.03a | 0.23±0.04a | 0.67±0.06a |
Sal B低剂量组 | 0.54±0.05b | 0.35±0.04b | 0.51±0.05b | 0.49±0.05b |
Sal B高剂量组 | 0.37±0.04bc | 0.45±0.04bc | 0.65±0.05bc | 0.35±0.04bc |
GSK-3β抑制 剂组 | 0.34±0.04bc | 0.47±0.05bc | 0.66±0.06bc | 0.33±0.05bc |
F | 165.088** | 83.802** | 107.528** | 92.378** |
图6 Sal B的信号通路图 Tcf/Lef:T细胞因子/淋巴细胞增强因子;FH535:Tcf抑制剂;Dkk-1:Wnt抑制剂;sFRP:分泌性卷曲相关蛋白;Wif-1:Wnt抑制因子1;APC:Wnt信号通路调节因子;Axin:轴蛋白;Dsh/Dvl:蓬乱蛋白/蓬乱蛋白Dsh同源物2;Frizzled:卷曲蛋白;LRP-5/6:低密度脂蛋白受体相关蛋白5/6。
Fig.6 Signal path diagram of Sal B
[1] | FENSTER R J, LEBOIS L, RESSLER K J, et al. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man[J]. Nat Rev Neurosci, 2018, 19(9):535-551. doi:10.1038/s41583-018-0039-7. |
[2] | MAERCKER A, CLOITRE M, BACHEM R, et al. Complex post-traumatic stress disorder[J]. Lancet, 2022, 400(10345):60-72. doi:10.1016/S0140-6736(22)00821-2. |
[3] | MERIANS A N, SPILLER T, HARPAZ-ROTEM I, et al. Post-traumatic stress disorder[J]. Med Clin North Am, 2023, 107(1):85-99. doi:10.1016/j.mcna.2022.04.003. |
[4] | YANG Y, SONG J, LIU N, et al. Salvianolic acid A relieves cognitive disorder after chronic cerebral ischemia: Involvement of Drd2/Cryab/NF-κB pathway[J]. Pharmacol Res, 2022, 175:105989. doi:10.1016/j.phrs.2021.105989. |
[5] | 李建, 李强, 李延峰, 等. 丹酚酸B治疗阿尔茨海默病的作用机制研究进展[J]. 中国药理学通报, 2022, 38(4):487-491. |
LI J, LI Q, LI Y F, et al. Recent progress of salvianolic acid B for treatment of Alzheimer’s disease[J]. Chinese Pharmacological Bulletin, 2022, 38(4):487-491. doi:10.12360/CPB202108020. | |
[6] | HUI J, ZHANG J, PU M, et al. Modulation of GSK-3β/β-catenin signaling contributes to learning and memory impairment in a rat model of depression[J]. Int J Neuropsychopharmacol, 2018, 21(9):858-870. doi:10.1093/ijnp/pyy040. |
[7] | ZHANG S, KONG D W, MA G D, et al. Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway[J]. Acta Pharmacol Sin, 2022, 43(9):2212-2225. doi:10.1038/s41401-021-00844-9. |
[8] | SHU T, LIU C, PANG M, et al. Salvianolic acid B promotes neural differentiation of induced pluripotent stem cells via PI3K/AKT/GSK3β/β-catenin pathway[J]. Neurosci Lett, 2018, 671:154-160. doi:10.1016/j.neulet.2018.02.007. |
[9] | 丛海涛, 丁进峰, 何海娟, 等. 右美托咪定对创伤后应激障碍大鼠核因子κB抑制蛋白激酶/核因子κB抑制蛋白α/核因子κB通路及认知功能障碍的影响[J]. 解剖学报, 2022, 53(3):295-301. |
CONG H T, DING J F, HE H J, et al. Effects of dexmedetomidine on nuclear factor-κB inhibitor protein kinase/nuclear factor-κB inhibitor proteinα/nuclear factor-κB pathway and cognitive dysfunction in rats with post-traumatic stress disorder[J]. Acta Anatomica Sinica, 2022, 53(3):295-301. doi:10.16098/j.issn.0529-1356.2022.03.004. | |
[10] | ALQURAAN L, ALZOUBI K H, HAMMAD H, et al. Omega-3 fatty acids prevent post-traumatic stress disorder-induced memory impairment[J]. Biomolecules, 2019, 9(3):100. doi:10.3390/biom9030100. |
[11] | 孙一萍, 李晓艳, 邵瑞洁, 等. 针刺对创伤后应激障碍大鼠海马内质网应激相关分子的影响[J]. 针刺研究, 2022, 47(3):224-230. |
SUN Y P, LI X Y, SHAO R J, et al. Effect of acupuncture on endoplasmic reticulum stress-related factors in hippocampus of post-traumatic stress disorder rats[J]. Acupuncture Research, 2022, 47(3):224-230. doi:10.13702/j.1000-0607.20210718. | |
[12] | ZHANG X, WU Q, LU Y, et al. Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways[J]. Free Radic Biol Med, 2018, 124:504-516. doi:10.1016/j.freeradbiomed.2018.06.035. |
[13] | KONDASHEVSKAYA M V, ARTEM'YEVA K A, ALEKSANKINA V V, et al. Phenotypically determined liver dysfunction in a Wistar rat model of post-traumatic stress disorder[J]. J Evol Biochem Physiol, 2022, 58(4):1015-1024. doi:10.1134/S002209302204007X. |
[14] | SUR B, LEE B. Ginsenoside Rg3 modulates spatial memory and fear memory extinction by the HPA axis and BDNF-TrkB pathway in a rat post-traumatic stress disorder[J]. J Nat Med, 2022, 76(4):821-831. doi:10.1007/s11418-022-01636-z. |
[15] | JIA Y, HAN Y, WANG X, et al. Role of apoptosis in the post-traumatic stress disorder model-single prolonged stressed rats[J]. Psychoneuroendocrinology, 2018, 95:97-105. doi:10.1016/j.psyneuen.2018.05.015. |
[16] | SEO J H, PARK H S, PARK S S, et al. Physical exercise ameliorates psychiatric disorders and cognitive dysfunctions by hippocampal mitochondrial function and neuroplasticity in post-traumatic stress disorder[J]. Exp Neurol, 2019, 322:113043. doi:10.1016/j.expneurol.2019.113043. |
[17] | XIAO Z, LIU W, MU Y P, et al. Pharmacological effects of salvianolic acid B against oxidative damage[J]. Front Pharmacol, 2020, 11:572373. doi:10.3389/fphar.2020.572373. |
[18] | GUO S S, WANG Z G. Salvianolic acid B from Salvia miltiorrhiza bunge:a potential antitumor agent[J]. Front Pharmacol, 2022, 13:1042745. doi:10.3389/fphar.2022.1042745. |
[19] | ZHAO R, LIU X, ZHANG L, et al. Current progress of research on neurodegenerative diseases of salvianolic acid B[J]. Oxid Med Cell Longev, 2019, 2019:3281260. doi:10.1155/2019/3281260. |
[20] | YU X, GUAN Q, WANG Y, et al. Anticonvulsant and anti-apoptosis effects of salvianolic acid B on pentylenetetrazole-kindled rats via AKT/CREB/BDNF signaling[J]. Epilepsy Res, 2019, 154:90-96. doi:10.1016/j.eplepsyres.2019.05.007. |
[21] | ZHAO Y, ZHANG Y, ZHANG J, et al. Salvianolic acid B protects against MPP+-induced neuronal injury via repressing oxidative stress and restoring mitochondrial function[J]. Neuroreport, 2021, 32(9):815-823. doi:10.1097/WNR.0000000000001660. |
[22] | YANG Y, WANG L, ZHANG C, et al. Ginsenoside Rg1 improves Alzheimer's disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway[J]. Chem Biol Drug Des, 2022, 99(6):884-896. doi:10.1111/cbdd.14041. |
[23] | HUANG Y L, ZHANG J N, HOU T Z, et al. Inhibition of Wnt/β-catenin signaling attenuates axonal degeneration in models of Parkinson's disease[J]. Neurochem Int, 2022, 159:105389. doi:10.1016/j.neuint.2022.105389. |
[24] | MAI C L, WEI X, GUI W S, et al. Differential regulation of GSK-3β in spinal dorsal horn and in hippocampus mediated by interleukin-1beta contributes to pain hypersensitivity and memory deficits following peripheral nerve injury[J]. Mol Pain, 2019, 15:1744806919826789. doi:10.1177/1744806919826789. |
[25] | WANG Y, AN X, ZHANG X, et al. Lithium chloride ameliorates cognition dysfunction induced by sevoflurane anesthesia in rats[J]. FEBS Open Bio, 2020, 10(2):251-258. doi:10.1002/2211-5463.12779. |
[26] | 钱红月, 肖移生, 侯吉华, 等. 黄精丸对D-半乳糖和冈田酸所致学习记忆障碍小鼠海马Wnt/β-catenin信号通路相关蛋白表达的影响[J]. 中国实验方剂学杂志, 2021, 27(1):63-71. |
QIAN H Y, XIAO Y S, HOU J H, et al. Effect of Huangjingwan on expressions of Wnt/β-catenin signal pathway-associated proteins in hippocampus of mice with Alzheimer's Disease induced by D-galactose and okadaic acid with learning and memory disorders[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(1):63-71. doi:10.13422/j.cnki.syfjx.20201876. | |
[27] | ZHOU H, LIU Y, SUN L, et al. Salvianolic acid B activates Wnt/β-catenin signaling following spinal cord injury[J]. Exp Ther Med, 2020, 19(2):825-832. doi:10.3892/etm.2019.8292. |
[28] | WANG B, KHAN S, WANG P, et al. A Highly Selective GSK-3β Inhibitor CHIR99021 promotes osteogenesis by activating canonical and autophagy-mediated Wnt signaling[J]. Front Endocrinol(Lausanne), 2022, 13:926622. doi:10.3389/fendo.2022.926622. |
[29] | KHURANA C, BEDI O. Proposed hypothesis of GSK-3β inhibition for stimulating Wnt/β-catenin signaling pathway which triggers liver regeneration process[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(3):377-380. doi:10.1007/s00210-022-02207-5. |
[1] | 钟玉梅, 周海燕, 张敏. ASIC1a介导类风湿关节炎软骨细胞损伤机制的研究进展[J]. 天津医药, 2024, 52(9): 1004-1008. |
[2] | 梁大敏, 杨正久, 张子萍, 钱静, 毛朝坤. 山萘酚逆转肝癌耐药细胞Bel-7402/5-Fu的作用机制研究[J]. 天津医药, 2024, 52(9): 900-906. |
[3] | 方杰, 黄芮, 郑红慧, 贾倩倩, 鲍静. miR-9-5p靶向TIMP2诱导多发性骨髓瘤细胞自噬和凋亡的机制[J]. 天津医药, 2024, 52(8): 785-790. |
[4] | 钱洪春, 张萍淑, 元小冬, 袁建新, 曹凌云, 段丽琴. 卒中伴阻塞性睡眠呼吸暂停患者认知功能损害与睡眠参数的关系[J]. 天津医药, 2024, 52(6): 619-624. |
[5] | 刘丹阳, 李永涛, 张海燕, 李林, 刘洋, 沈雷. 乳腺癌细胞条件培养基对骨髓间充质干细胞生物学行为的影响[J]. 天津医药, 2024, 52(5): 454-458. |
[6] | 陈惠刚, 池小锋, 封娣, 米娅莉. 黄芪甲苷抑制Fas/FasL信号通路减轻创伤性脑损伤大鼠神经功能缺损和神经元凋亡[J]. 天津医药, 2024, 52(5): 469-474. |
[7] | 刘明林, 封霞, 陈奕心, 冷兴丽, 王少清. 维持性血液透析患者血浆Aβ、P-tau181水平与认知功能障碍的相关性研究[J]. 天津医药, 2024, 52(5): 505-508. |
[8] | 韩正怡, 李锐, 陈齐, 王家友, 盛奎, 宋洁, 张野. 收肌管阻滞联合全麻对老年全膝关节置换术患者术后疼痛和认知功能的影响[J]. 天津医药, 2024, 52(5): 523-527. |
[9] | 王月, 权兴苗, 王玉, 宋春侠, 邵月, 徐立伟. 益气升清方调节HIF-1α/NLRP3信号通路对缺血性脑卒中大鼠神经元焦亡的影响[J]. 天津医药, 2024, 52(4): 350-355. |
[10] | 李伟, 陈亮, 吕昌迎. circ_HIPK3靶向miR-381-3p/ZNF217轴调控Aβ诱导的海马神经元功能和形态[J]. 天津医药, 2024, 52(3): 237-244. |
[11] | 王扶凝, 代会博, 单云, 俞曼殊, 盛梅笑. 骨髓间充质干细胞对腹膜间皮细胞凋亡的影响[J]. 天津医药, 2024, 52(2): 113-118. |
[12] | 陈慧敏, 贾洪峰, 江婷婷, 贾耀辉. 术中血糖波动和术后胰岛素抵抗对胸腔镜肺癌根治术后老年患者认知功能障碍的影响[J]. 天津医药, 2024, 52(2): 201-205. |
[13] | 缪春波, 许迎春, 常以芳. 根皮苷通过下调miR-125a-5p减轻缺氧/复氧诱导的H9C2细胞氧化应激和凋亡[J]. 天津医药, 2024, 52(12): 1233-1238. |
[14] | 林瑶, 刘从娜, 王世霞, 张志勇. 金合欢素调节HMGB1/TLR4信号通路对脂多糖诱导牙髓细胞凋亡的影响[J]. 天津医药, 2024, 52(12): 1238-1243. |
[15] | 黄晓蕾, 葛婷婷, 赵俊松, 倪志华. 人参皂苷Rg1在IL-6诱导的大鼠神经元铁死亡中的作用[J]. 天津医药, 2024, 52(11): 1137-1140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||