[1] |
KIERNAN M C, VUCIC S, TALBOT K, et al. Improving clinical trial outcomes in amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2021, 17(2):104-118. doi:10.1038/s41582-020-00434-z.
|
[2] |
BAUCKNEHT M, LAI R, MICELI A, et al. Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis:a computational approach to [18F]-fluorodeoxyglucose PET/CT images[J]. EJNMMI Res, 2020, 10(1):23. doi:10.1186/s13550-020-0607-5.
|
[3] |
GAO M, LIU N, LI X M, et al. Epidemiology and factors predicting survival of amyotrophic lateral sclerosis in a large Chinese cohort[J]. Chin Med J(Engl), 2021, 134(18):2231-2236. doi:10.1097/CM9.0000000000001679.
|
[4] |
SUN Q, HUO Y, BAI J, et al. Characteristics of late-onset amyotrophic lateral sclerosis in a Chinese cohort[J]. Neurodegener Dis, 2021, 21(1/2):24-29. doi:10.1159/000519002.
|
[5] |
HUANG S, ZHENG M, LIN J, et al. Natural history and remarkable psychiatric state of late-onset amyotrophic lateral sclerosis in China[J]. Acta Neurol Scand, 2022, 146(1):24-33. doi:10.1111/ane.13598.
|
[6] |
LI J Y, SUN X H, CAI Z Y, et al. Correlation of weight and body composition with disease progression rate in patients with amyotrophic lateral sclerosis[J]. Sci Rep, 2022, 12(1):13292. doi:10.1038/s41598-022-16229-9.
|
[7] |
SUN Q H, LI Y R, LAN W J, et al. Prognostic value of time to generalization in 71 Chinese patients with sporadic amyotrophic lateral sclerosis[J]. Chin Med J(Engl), 2019, 132(9):1023-1027. doi: 10.1097/CM9.0000000000000200.
|
[8] |
HE Z, SUN B, FENG F, et al. Time of symptoms beyond the bulbar region predicts survival in bulbar onset amyotrophic lateral sclerosis[J]. Neurol Sci, 2022, 43(3):1817-1822. doi:10.1007/s10072-021-05556-w.
|
[9] |
RICHARDS D, MORREN J A, PIORO E P. Time to diagnosis and factors affecting diagnostic delay in amyotrophic lateral sclerosis[J]. J Neurol Sci, 2020, 417:117054. doi:10.1016/j.jns.2020.117054.
|
[10] |
SUN C, FOURNIER C N, YE S, et al. Chinese validation of the Rasch-built overall amyotrophic lateral sclerosis disability scale[J]. Eur J Neurol, 2021, 28(6):1876-1883. doi:10.1111/ene.14811.
|
[11] |
FOURNIER C N, BEDLACK R, QUINN C, et al. Development and validation of the Rasch-built overall amyotrophic lateral sclerosis disability scale(ROADS)[J]. JAMA Neurol, 2020, 77(4):480-488. doi:10.1001/jamaneurol.2019.4490.
|
[12] |
PINTO S, de CARVALHO M. SVC is a marker of respiratory decline function, similar to FVC, in patients with ALS[J]. Front Neurol, 2019, 10:109. doi:10.3389/fneur.2019.00109.
|
[13] |
ENACHE I, PISTEA C, FLEURY M, et al. Ability of pulmonary function decline to predict death in amyotrophic lateral sclerosis patients[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2017, 18(7/8):511-518. doi:10.1080/21678421.2017.1353097.
|
[14] |
HUANG X, DU C, YANG Q, et al. Comparison of slow and forced vital capacity on ability to evaluate respiratory function in bulbar-involved amyotrophic lateral sclerosis[J]. Front Neurol, 2022, 13:938256. doi:10.3389/fneur.2022.938256.
|
[15] |
HUYNH W, AHMED R, MAHONEY C J, et al. The impact of cognitive and behavioral impairment in amyotrophic lateral sclerosis[J]. Expert Rev Neurother, 2020, 20(3):281-293. doi:10.1080/14737175.2020.1727740.
|
[16] |
XU Z, ALRUWAILI A, HENDERSON R D, et al. Screening for cognitive and behavioural impairment in amyotrophic lateral sclerosis:Frequency of abnormality and effect on survival[J]. J Neurol Sci, 2017, 376:16-23. doi:10.1016/j.jns.2017.02.061.
|
[17] |
MURDOCK B J, ZHOU T, KASHLAN S R, et al. Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression[J]. JAMA Neurol, 2017, 74(12):1446-1454. doi:10.1001/jamaneurol.2017.2255.
|
[18] |
CUI C, INGRE C, YIN L, et al. Correlation between leukocyte phenotypes and prognosis of amyotrophic lateral sclerosis[J]. Elife, 2022, 11:e74065. doi:10.7554/eLife.74065.
|
[19] |
INGRE C, CHEN L, ZHAN Y, et al. Lipids, apolipoproteins, and prognosis of amyotrophic lateral sclerosis[J]. Neurology, 2020, 94(17): e1835-e1844. doi:10.1212/WNL.0000000000009322.
|
[20] |
HOLDOM C J, JANSE V M M, VAN EIJK R, et al. Venous creatinine as a biomarker for loss of fat-free mass and disease progression in patients with amyotrophic lateral sclerosis[J]. Eur J Neurol, 2021, 28(11):3615-3625. doi:10.1111/ene.15003.
|
[21] |
GUO Q F, HU W, XU L Q, et al. Decreased serum creatinine levels predict short survival in amyotrophic lateral sclerosis[J]. Ann Clin Transl Neurol, 2021, 8(2):448-455. doi:10.1002/acn3.51299.
|
[22] |
CHENG Y, CHEN Y, SHANG H. Aberrations of biochemical indicators in amyotrophic lateral sclerosis:a systematic review and meta-analysis[J]. Transl Neurodegener, 2021, 10(1):3. doi:10.1186/s40035-020-00228-9.
|
[23] |
de CARVALHO M, DENGLER R, EISEN A, et al. Electrodiagnostic criteria for diagnosis of ALS[J]. Clin Neurophysiol, 2008, 119(3):497-503. doi:10.1016/j.clinph.2007.09.143.
|
[24] |
SATO M, NAKAMURA T, NAGASHIMA K, et al. Prolonged distal latency of the median motor nerve is associated with poor prognosis in amyotrophic lateral sclerosis[J]. Neurol Res, 2021, 43(3):191-198. doi:10.1080/01616412.2020.1834291.
|
[25] |
IMAI E, NAKAMURA T, ATSUTA N, et al. A nerve conduction study predicts the prognosis of sporadic amyotrophic lateral sclerosis[J]. J Neurol, 2020, 267(9):2524-2532. doi:10.1007/s00415-020-09858-5.
|
[26] |
FILECCIA E, De PASQUA S, RIZZO G, et al. Denervation findings on EMG in amyotrophic lateral sclerosis and correlation with prognostic milestones:Data from a retrospective study[J]. Clin Neurophysiol, 2020, 131(8):2017-2022. doi:10.1016/j.clinph.2020.04.161.
|
[27] |
VACCHIANO V, DI STASI V, RIZZO G, et al. Prognostic value of EMG genioglossus involvement in amyotrophic lateral sclerosis[J]. Clin Neurophysiol, 2021, 132(10):2416-2421. doi:10.1016/j.clinph.2021.07.011.
|
[28] |
COLOMBO E, DORETTI A, SCHEVEGER F, et al. Correlation between clinical phenotype and electromyographic parameters in amyotrophic lateral sclerosis[J]. J Neurol, 2023, 270(1):511-518. doi:10.1007/s00415-022-11404-4.
|
[29] |
FERRARO P M, CABONA C, MEO G, et al. Age at symptom onset influences cortical thinning distribution and survival in amyotrophic lateral sclerosis[J]. Neuroradiology, 2021, 63(9):1481-1487. doi:10.1007/s00234-021-02681-3.
|
[30] |
MILELLA G, INTRONA A, GHIRELLI A, et al. Medulla oblongata volume as a promising predictor of survival in amyotrophic lateral sclerosis[J]. Neuroimage Clin, 2022, 34:103015. doi:10.1016/j.nicl.2022.103015.
|
[31] |
RIZZO G, MARLIANI A F, BATTAGLIA S, et al. Diagnostic and prognostic value of conventional brain MRI in the clinical work-up of patients with amyotrophic lateral sclerosis[J]. J Clin Med, 2020, 9(8):2538. doi:10.3390/jcm9082538.
|
[32] |
TAVAZZI E, DABERDAKU S, ZANDONA A, et al. Predicting functional impairment trajectories in amyotrophic lateral sclerosis:a probabilistic, multifactorial model of disease progression[J]. J Neurol, 2022, 269(7):3858-3878. doi:10.1007/s00415-022-11022-0.
|
[33] |
ACKRIVO J, HANSEN-FLASCHEN J, WILEYTO E P, et al. Development of a prognostic model of respiratory insufficiency or death in amyotrophic lateral sclerosis[J]. Eur Respir J, 2019, 53(4):1802237. doi:10.1183/13993003.02237-2018.
|
[34] |
GROLLEMUND V, CHAT G L, SECCHI-BUHOUR M S, et al. Development and validation of a 1-year survival prognosis estimation model for amyotrophic lateral sclerosis using manifold learning algorithm UMAP[J]. Sci Rep, 2020, 10(1):13378. doi:10.1038/s41598-020-70125-8.
|