[1] |
CHENG L, HILL A F. Therapeutically harnessing extracellular vesicles[J]. Nat Rev Drug Discov, 2022, 21(5):379-399. doi:10.1038/s41573-022-00410-w.
|
[2] |
COLOMBO M, RAPOSO G, THÉRY C. Biogenesis,secretion,and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30:255-289. doi:10.1146/annurev-cellbio-101512-122326.
|
[3] |
TANG J, JIN L, LIU Y, et al. Exosomes derived from mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through inhibiting pyroptosis[J]. Drug Des Devel Ther, 2020, 14:3765-3775. doi:10.2147/DDDT.S239546.
|
[4] |
SUN X H, WANG X, ZHANG Y, et al. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J]. Thromb Res, 2019, 177:23-32. doi:10.1016/j.thromres.2019.02.002.
|
[5] |
SUN J, SHEN H, SHAO L, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis[J]. Stem Cell Res Ther, 2020, 11(1):373. doi:10.1186/s13287-020-01881-7.
|
[6] |
BU L, JIANG X, MARTIN-PUIG S, et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages[J]. Nature, 2009, 460(7251):113-117. doi:10.1038/nature08191.
|
[7] |
YOUN S W, LI Y, KIM Y M, et al. Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis[J]. Antioxidants(Basel), 2019, 8(1):18. doi:10.3390/antiox8010018.
|
[8] |
XIAO J, PAN Y, LI X H, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J]. Cell Death Dis, 2016, 7(6):e2277. doi:10.1038/cddis.2016.181.
|
[9] |
VICENCIO J M, YELLON D M, SIVARAMAN V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury[J]. J Am Coll Cardiol, 2015, 65(15):1525-1536. doi:10.1016/j.jacc.2015.02.026.
|
[10] |
LUO Z, HU X, WU C, et al. Plasma exosomes generated by ischaemic preconditioning are cardioprotective in a rat heart failure model[J]. Br J Anaesth, 2023, 130(1):29-38. doi:10.1016/j.bja.2022.08.040.
|
[11] |
WANG B, CAO C, HAN D, et al. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair[J]. Biomed Pharmacother, 2021, 142:112056. doi:10.1016/j.biopha.2021.112056.
|
[12] |
TURNER A, AGGARWAL P, MATTER A, et al. Donor-specific phenotypic variation in hiPSC cardiomyocyte-derived exosomes impacts endothelial cell function[J]. Am J Physiol Heart Circ Physiol, 2021, 320(3):H954-H968. doi:10.1152/ajpheart.00463.2020.
|
[13] |
LIU N, XIE L, XIAO P, et al. Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury[J]. Mol Cell Biochem, 2022, 477(4):1249-1260. doi:10.1007/s11010-021-04343-7.
|
[14] |
LUO H, LI X, LI T, et al. microRNA-423-3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning[J]. Cardiovasc Res, 2019, 115(7):1189-1204. doi:10.1093/cvr/cvy231.
|
[15] |
ZHU F, CHEN Y, LI J, et al. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate myocardial infarction injury via miR-24-3p-Promoted M2 macrophage polarization[J]. Adv Biol(Weinh), 2022, 6(11):e2200074. doi:10.1002/adbi.202200074.
|
[16] |
WANG C, ZHANG C, LIU L, et al. Macrophage-derived miR-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury[J]. Mol Ther, 2017, 25(1):192-204. doi:10.1016/j.ymthe.2016.09.001.
|
[17] |
LIU S, CHEN J, SHI J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol, 2020, 115(2):22. doi:10.1007/s00395-020-0781-7.
|
[18] |
DAI Y, WANG S, CHANG S, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway[J]. J Mol Cell Cardiol, 2020, 142:65-79. doi:10.1016/j.yjmcc.2020.02.007.
|
[19] |
LONG R, GAO L, LI Y, et al. M2 macrophage-derived exosomes carry miR-1271-5p to alleviate cardiac injury in acute myocardial infarction through down-regulating SOX6[J]. Mol Immunol, 2021, 136:26-35. doi:10.1016/j.molimm.2021.05.006.
|
[20] |
CHEN C, CAI S, WU M, et al. Role of cardiomyocyte-derived exosomal microRNA-146a-5p in macrophage polarization and activation[J]. Dis Markers, 2022, 2022:2948578. doi:10.1155/2022/2948578.
|
[21] |
XU R, ZHANG F, CHAI R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization[J]. J Cell Mol Med, 2019, 23(11):7617-7631. doi:10.1111/jcmm.14635.
|
[22] |
DENG S, ZHOU X, GE Z, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J]. Int J Biochem Cell Biol, 2019, 114:105564. doi:10.1016/j.biocel.2019.105564.
|
[23] |
HAZAN-HALEVY I, ROSENBLUM D, WEINSTEIN S, et al. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes[J]. Cancer Lett, 2015, 364(1):59-69. doi:10.1016/j.canlet.2015.04.026.
|
[24] |
GALLET R, DAWKINS J, VALLE J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J, 2017, 38(3):201-211. doi:10.1093/eurheartj/ehw240.
|
[25] |
HU C M, FANG R H, WANG K C, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571):118-121. doi:10.1038/nature15373.
|
[26] |
VAN DER MEEL R, FENS M H, VADER P, et al. Extracellular vesicles as drug delivery systems:Lessons from the liposome field[J]. J Control Release, 2014, 195:72-85. doi:10.1016/j.jconrel.2014.07.049.
|
[27] |
WEI Z, CHEN Z, ZHAO Y, et al. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment[J]. Biomaterials, 2021, 275:121000. doi:10.1016/j.biomaterials.2021.121000.
|
[28] |
YAO J, HUANG K, ZHU D, et al. A minimally invasive exosome spray repairs heart after myocardial infarction[J]. ACS Nano, 2021, 15(7):11099-11111. doi:10.1021/acsnano.1c00628.
|
[29] |
LI Q, SONG Y, WANG Q, et al. Engineering extracellular vesicles with platelet membranes fusion enhanced targeted therapeutic angiogenesis in a mouse model of myocardial ischemia reperfusion[J]. Theranostics, 2021, 11(8):3916-3931. doi:10.7150/thno.52496.
|
[30] |
SPRINGER T A. von Willebrand factor,Jedi knight of the bloodstream[J]. Blood, 2014, 124(9):1412-1425. doi:10.1182/blood-2014-05-378638.
|
[31] |
VALENTIJN K M, EIKENBOOM J. Weibel-palade bodies:a window to von Willebrand disease[J]. J Thromb Haemost, 2013, 11(4):581-592. doi:10.1111/jth.12160.
|
[32] |
ZHANG N, SONG Y, HUANG Z, et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model[J]. Biomaterials, 2020, 255:120168. doi:10.1016/j.biomaterials.2020.120168.
|