[1] |
LIANG B, BURLEY G, LIN S, et al. Osteoporosis pathogenesis and treatment: existing and emerging avenues[J]. Cell Mol Biol Lett, 2022, 27(1):72. doi:10.1186/s11658-022-00371-3.
|
[2] |
EBELING P R, AKESSON K, BAUER D C, et al. The efficacy and safety of vertebral augmentation:a second ASBMR task force report[J]. J Bone Miner Res, 2019, 34(1):3-21. doi:10.1002/jbmr.3653.
|
[3] |
HOLMES D. Non-union bone fracture:a quicker fix[J]. Nature, 2017, 550(7677):S193. doi:10.1038/550S193a.
|
[4] |
AGHEBATI-MALEKI L, DOLATI S, ZANDI R, et al. Prospect of mesenchymal stem cells in therapy of osteoporosis:a review[J]. J Cell Physiol, 2019, 234(6):8570-8578. doi:10.1002/jcp.27833.
|
[5] |
ZHANG L, LIN Y, ZHANG X, et al. Research progress of exosomes in orthopedics[J]. Front Genet, 2022, 13:915141. doi:10.3389/fgene.2022.915141.
|
[6] |
XIE X, XIONG Y, PANAYI A C, et al. Exosomes as a novel approach to reverse osteoporosis:a review of the literature[J]. Front Bioeng Biotechnol, 2020, 8:594247. doi:10.3389/fbioe.2020.594247.
|
[7] |
KANG Y, XU J, MENG L, et al. 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis[J]. Biofabrication, 2023, 15(2). doi:10.1088/1758-5090/acb6b8.
|
[8] |
刘华, 陈晓芳, 徐晔, 等. 宽筋散热熨治疗骨质疏松性椎体压缩性骨折经皮椎体成形术后残留腰背痛的疗效[J]. 中国中西医结合外科杂志, 2024, 30(2):209-214.
|
|
LIU H, CHEN X F, XU Y, et al. Efficacy observation on Kuanjin Powder hot ironing in the treatment of residual low back pain in patients with osteoporotic vertebral compression fracture after PVP[J]. Chinese Journal of Integrated Traditional Chinese and Western Medicine Surgery, 2024, 30(2):209-214. doi:10.3969/j.issn.1007-6948.2024.02.012.
|
[9] |
CAMBRÉ I, GAUBLOMME D, BURSSENS A, et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis[J]. Nat Commun, 2018, 9(1):4613. doi:10.1038/s41467-018-06933-4.
|
[10] |
LEE H J, DIAZ M F, PRICE K M, et al. Fluid shear stress activates YAP1 to promote cancer cell motility[J]. Nat Commun, 2017,8:14122. doi:10.1038/ncomms14122.
|
[11] |
ZHANG P, LIU X, GUO P, et al. Effect of cyclic mechanical loading on immunoinflammatory microenvironment in biofabricating hydroxyapatite scaffold for bone regeneration[J]. Bioact Mater, 2021, 6(10):3097-3108. doi:10.1016/j.bioactmat.2021.02.024.
|
[12] |
YU W, CHEN C, KOU X, et al. Mechanical force-driven TNFα endocytosis governs stem cell homeostasis[J]. Bone Res, 2021, 8(1):44. doi:10.1038/s41413-020-00117-x.
|
[13] |
HE D, LIU F, CUI S, et al. Mechanical load-induced H2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1[J]. Stem Cell Res Ther, 2020, 11(1):112. doi:10.1186/s13287-020-01607-9.
|
[14] |
JIANG Y N, ZHAO J, CHU F T, et al. Tension-loaded bone marrow stromal cells potentiate the paracrine osteogenic signaling of co-cultured vascular endothelial cells[J]. BiolOpen, 2018, 7(6):bio032482. doi:10.1242/bio.032482.
|
[15] |
BANDARU P, CEFALONI G, VAJHADIN F, et al. Mechanical cues regulating proangiogenic potential of human mesenchymal stem cells through YAP-Mediated mechanosensing[J]. Small, 2020, 16(25):2001837. doi:10.1002/smll.202001837.
|
[16] |
WANG X, LI X, LI J, et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells[J]. FASEB J, 2021, 35(1):e21150. doi:10.1096/fj.202001080RR.
|
[17] |
LI N, WANG W B, BAO H, et al. MicroRNA-129-1-3p regulates cyclic stretch-induced endothelial progenitor cell differentiation by targeting Runx2[J]. J Cell Biochem, 2019, 120(4):5256-5267. doi:10.1002/jcb.27800.
|
[18] |
CLAES L, MEYERS N, SCHÜLKE J, et al. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction[J]. PLoS One, 2018, 13(8):e0202702. doi:10.1371/journal.pone.0202702.
|
[19] |
DU J, YANG J, HE Z, et al. Osteoblast and osteoclast activity affect bone remodeling upon regulation by mechanical loading-induced leukemia inhibitory factor expression in osteocytes[J]. Front Mol Biosci, 2020, 7:585056. doi:10.3389/fmolb.2020.585056.
|
[20] |
EICHHOLZ K F, WOODS I, RIFFAULT M, et al. Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles[J]. Stem Cells Transl Med, 2020, 9(11):1431-1447. doi:10.1002/sctm.19-0405.
|
[21] |
LV P Y, GAO P F, TIAN G J, et al. Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1):295. doi:10.1186/s13287-020-01815-3.
|
[22] |
DAMKHAM N, ISSARAGRISIL S, LORTHONGPANICH C. Role of YAP as a mechanosensing molecule in stem cells and stem cell-derived hematopoietic cells[J]. Int J Mol Sci, 2022, 23(23):14634. doi:10.3390/ijms232314634.
|
[23] |
KUSUYAMA J, BANDOW K, SHAMOTO M, et al. Low intensity pulsed ultrasound(LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway[J]. J Biol Chem, 2014, 289(15):10330-10344. doi:10.1074/jbc.M113.546382.
|
[24] |
KHAN A U, QU R, FAN T, et al. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells[J]. Stem Cell Res Ther, 2020, 11(1):283. doi:10.1186/s13287-020-01789-2.
|
[25] |
IQBAL J, YUEN T, KIM S M, et al. Opening windows for bone remodeling through a SLIT[J]. J Clin Invest, 2018, 128(4):1255-1257. doi:10.1172/JCI120325.
|
[26] |
WANG Z, WANG Y, WANG Z, et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury[J]. Stem Cells, 2015, 33(2):456-467. doi:10.1002/stem.1878.
|
[27] |
聂进, 刘代顺, 张建勇, 等. 脐带间充质干细胞外泌体对慢性阻塞性肺疾病大鼠肺部炎症的作用机制探讨[J]. 天津医药, 2023, 51(12):1326-1331.
|
|
NIE J, LIU D S, ZHANG J Y, et al. The effect and mechanism of exosomes from umbilical cord mesenchymal stem cells on pulmonary inflammation in chronic obstructive pulmonary disease rats[J]. Tianjin Med J, 2023, 51(12):1326-1331. doi:10.11958/20230708.
|
[28] |
LI L, ZHOU X, ZHANG J T, et al. Exosomal miR-186 derived from BMSCs promote osteogenesis through hippo signaling pathway in postmenopausal osteoporosis[J]. J Orthop Surg Res, 2021, 16(1):23. doi:10.1186/s13018-020-02160-0.
|
[29] |
QIU M, ZHAI S, FU Q, et al. Bone marrow mesenchymal stem cells-derived exosomal MicroRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis[J]. Hum Gene Ther, 2021, 32(13/14):717-729. doi:10.1089/hum.2020.005.
|
[30] |
ZHANG Y, CAO X, LI P, et al. microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats[J]. Life Sci, 2021, 272:119204. doi:10.1016/j.lfs.2021.119204.
|
[31] |
LI J, HE X, WEI W, et al. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1[J]. Biochem Biophys Res Commun, 2015, 460(2):482-488. doi:10.1016/j.bbrc.2015.03.059.
|
[32] |
钱士达, 于雪峰. 骨髓间充质干细胞治疗激素性股骨头坏死的研究进展[J]. 天津医药, 2023, 51(5):553-556.
|
|
QIAN S D, YU X F. Research progress on bone marrow mesenchymal stem cells in the treatment ofsteroid-induced osteonecrosis of femoral head[J]. Tianjin Med J, 2023, 51(5):553-556. doi:10.11958/20221802.
|
[33] |
JIA Y, QIU S, XU J, et al. Exosomes secreted by young mesenchymal stem cells promote new bone formation during distraction osteogenesis in older rats[J]. Calcif Tissue Int, 2020, 106(5):509-517. doi:10.1007/s00223-019-00656-4.
|
[34] |
LU G D, CHENG P, LIU T, et al. Bmsc-derived exosomal miR-29a promotes angiogenesis and osteogenesis[J]. Front Cell Dev Biol, 2020, 8:608521. doi:10.3389/fcell.2020.608521.
|
[35] |
NAKAO Y, FUKUDA T, ZHANG Q, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater, 2021, 122:306-324. doi:10.1016/j.actbio.2020.12.046.
|
[36] |
HU H, ZHANG H, BU Z, et al. Small extracellular vesicles released from bioglass/hydrogel scaffold promote vascularized bone regeneration by transferring miR-23a-3p[J]. Int J Nanomed, 2022, 17:6201-6220. doi:10.2147/IJN.S389471.
|
[37] |
PENG Y, WU S, LI Y, et al. Type H blood vessels in bone modeling and remodeling[J]. Theranostics, 2020, 10(1):426-436. doi:10.7150/thno.34126.
|
[38] |
LIU W, LI L, RONG Y, et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J]. Acta Biomater, 2020, 103:196-212. doi:10.1016/j.actbio.2019.12.020.
|
[39] |
GUO S, DEBBI L, ZOHAR B, et al. Stimulating extracellular vesicles production from engineered tissues by mechanical Forces[J]. Nano Lett, 2021, 21(6):2497-2504. doi:10.1021/acs.nanolett.0c04834.
|
[40] |
HAO R, HU S, ZHANG H, et al. Mechanical stimulation on a microfluidic device to highly enhance small extracellular vesicle secretion of mesenchymal stem cells[J]. Mater Today Bio, 2023, 18:100527. doi:10.1016/j.mtbio.2022.100527.
|
[41] |
NAJRANA T, MAHADEO A, ABU-EID R, et al. Mechanical stretch regulates the expression of specific miRNA in extracellular vesicles released from lung epithelial cells[J]. J Cell Physiol, 2020, 235(11):8210-8223. doi:10.1002/jcp.29476.
|
[42] |
WANG Z, MARUYAMA K, SAKISAKA Y, et al. Cyclic stretch force induces periodontal ligament cells to secrete exosomes that suppress IL-1β production through the inhibition of the NF-κB signaling pathway in macrophages[J]. Front Immunol, 2019, 10:1310. doi:10.3389/fimmu.2019.01310.
|
[43] |
XIAO F, ZUO B, TAO B, et al. Exosomes derived from cyclic mechanical stretch-exposed bone marrow mesenchymal stem cells inhibit RANKL-induced osteoclastogenesis through the NF-κB signaling pathway[J]. Ann Transl Med, 2021, 9(9):798. doi:10.21037/atm-21-1838.
|
[44] |
SHEN N, MAGGIO M, WOODS I, et al. Mechanically activated mesenchymal-derived bone cells drive vessel formation via an extracellular vesicle mediated mechanism[J]. J Tissue Eng, 2023,14:20417314231186918. doi:10.1177/20417314231186918.
|