[1] |
VALLEJO J, COCHAIN C, ZERNECKE A, et al. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq[J]. Cardiovasc Res, 2021, 117(13):2537-2543. doi:10.1093/cvr/cvab260.
|
[2] |
XU S, ILYAS I, LITTLE P J, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond:from mechanism to pharmacotherapies[J]. Pharmacol Rev, 2021, 73(3):924-967. doi:10.1124/pharmrev.120.000096.
|
[3] |
SOEHNLEIN O, LIBBY P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic[J]. Nat Rev Drug Discov, 2021, 20(8):589-610. doi:10.1038/s41573-021-00198-1.
|
[4] |
MA S, LU G, ZHANG Q, et al. Extracellular-superoxide dismutase DNA methylation promotes oxidative stress in homocysteine-induced atherosclerosis[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(9):1222-1233. doi:10.3724/abbs.2022093.
|
[5] |
FAN J, WATANABE T. Atherosclerosis:Known and unknown[J]. Pathol Int, 2022, 72(3):151-160. doi:10.1111/pin.13202.
|
[6] |
ZHANG G, YU F, DONG R, et al. Verbascoside alleviates renal fibrosis in unilateral ureteral obstruction rats by inhibiting macrophage infiltration[J]. Iran J Basic Med Sci, 2021, 24(6):752-759. doi:10.22038/ijbms.2021.52759.11903.
|
[7] |
FAN Y, ZHANG K. Verbascoside inhibits the progression of atherosclerosis in high fat diet induced atherosclerosis rat model[J]. J Physiol Pharmacol, 2021, 72(3):329-337. doi:10.26402/jpp.2021.3.03.
|
[8] |
WANG J, LI R, PENG Z, et al. HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2,TLR4,and RAGE/NF-κB signaling pathways[J]. Int J Mol Med, 2020, 45(1):61-80. doi:10.3892/ijmm.2020.4530.
|
[9] |
ZHANG X, FERNÁNDEZ-HERNANDO C. Endothelial HMGB1(high-mobility group box 1)regulation of LDL(low-density lipoprotein)transcytosis:a novel mechanism of intracellular HMGB1 in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2021, 41(1):217-219. doi:10.1161/ATVBAHA.120.315517.
|
[10] |
焦艳, 谢世静, 李喆. 沙棘黄酮对大鼠动脉粥样硬化斑块的影响及作用机制[J]. 中国老年学杂志, 2022, 42(6):1472-1475.
|
|
JIAO Y, XIE S J, LI Z. Effect of sea-buckthorn flavone on atherosclerotic plaque in rats and its mechanism of action[J]. Chinese Journal of Gerontology, 2022, 42(6):1472-1475. doi:10.3969/j.issn.1005-9202.2022.06.055.
|
[11] |
白荣钰, 易欢, 陈丰连, 等. 毛冬青三萜皂苷对动脉粥样硬化大鼠肠道菌群的影响[J]. 中草药, 2021, 52(20):6245-6253.
|
|
BAI R Y, YI H, CHEN F L, et al. Effect of triterpenoid saponins from llex pubescens on intestinal flora in atherosclerotic rats[J]. Chinese Traditional and Herbal Drugs, 2021, 52(20):6245-6253. doi:10.7501/j.issn.0253-2670.2021.20.014.
|
[12] |
MAN J J, BECKMAN J A, JAFFE I Z. Sex as a biological variable in atherosclerosis[J]. Circ Res, 2020, 126(9):1297-1319. doi:10.1161/CIRCRESAHA.120.315930.
|
[13] |
WU M, GAO Y, CHEN B. Mechanism of acteoside-activated let-7g-5P attenuating Aβ-induced increased permeability and apoptosis of brain microvascular endothelial cells based on experimental and network pharmacology[J]. Neuroreport, 2022, 33(16):714-722. doi:10.1097/WNR.0000000000001837.
|
[14] |
ZHANG S, HONG F, MA C, et al. Hepatic lipid metabolism disorder and atherosclerosis[J]. Endocr Metab Immune Disord Drug Targets, 2022, 22(6):590-600. doi:10.2174/1871530322666211220110810.
|
[15] |
SHRAMKO V S, STRYUKOVA E V, KASHTANOVA E V, et al. Adipokines and adipocytokines in men with coronary atherosclerosis and overweight[J]. Kardiologiia, 2022, 62(11):49-55. doi:10.18087/cardio.2022.11.n2237.
|
[16] |
JEON S, KIM T K, JEONG S J, et al. Anti-inflammatory actions of soluble ninjurin-1 ameliorate atherosclerosis[J]. Circulation, 2020, 142(18):1736-1751. doi:10.1161/CIRCULATIONAHA.120.046907.
|
[17] |
LIU P, WANG S, WANG G, et al. Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation[J]. J Cell Mol Med, 2022, 26(20):5165-5180. doi:10.1111/jcmm.17541.
|
[18] |
DORAN A C. Inflammation resolution:implications for atherosclerosis[J]. Circ Res, 2022, 130(1):130-148. doi:10.1161/CIRCRESAHA.121.319822.
|
[19] |
KAKE S, KAWAGUCHI H, NAGASATO T, et al. Association between HMGB1 and thrombogenesis in a hyperlipaemia-induced microminipig model of atherosclerosis[J]. In Vivo, 2020, 34(4):1871-1874. doi:10.21873/invivo.11982.
|
[20] |
JEONG J, LEE J, LIM J, et al. Soluble RAGE attenuates AngII-induced endothelial hyperpermeability by disrupting HMGB1-mediated crosstalk between AT1R and RAGE[J]. Exp Mol Med, 2019, 51(9):1-15. doi:10.1038/s12276-019-0312-5.
|
[21] |
OLEJARZ W, GŁUSZKO A, CYRAN A, et al. TLRs and RAGE are elevated in carotid plaques from patients with moderate-to-severe obstructive sleep apnea syndrome[J]. Sleep Breath, 2020, 24(4):1573-1580. doi:10.1007/s11325-020-02029-w.
|