[1] |
ABOULKHEYR ES H, MONTAZERI L, AREF A R, et al. Personalized cancer medicine:an organoid approach[J]. Trends Biotechnol, 2018, 36(4):358-371. doi:10.1016/j.tibtech.2017.12.005.
|
[2] |
SHIN S H, BODE A M, DONG Z. Precision medicine:the foundation of future cancer therapeutics[J]. NPJ Precis Oncol, 2017, 1(1):12. doi:10.1038/s41698-017-0016-z.
|
[3] |
PRIOR N, INACIO P, HUCH M. Liver organoids:from basic research to therapeutic applications[J]. Gut, 2019, 68(12):2228-2237. doi:10.1136/gutjnl-2019-319256.
|
[4] |
FANG Z, LI P, DU F, et al. The role of organoids in cancer research[J]. Exp Hematol Oncol, 2023, 12(1):69. doi:10.1186/s40164-023-00433-y.
|
[5] |
SUAREZ-MARTINEZ E, SUAZO-SANCHEZ I, CELIS-ROMERO M, et al. 3D and organoid culture in research:physiology,hereditary genetic diseases and cancer[J]. Cell Biosci, 2022, 12(1):39. doi:10.1186/s13578-022-00775-w.
|
[6] |
REN X, CHEN W, YANG Q, et al. Patient-derived cancer organoids for drug screening:basic technology and clinical application[J]. J Gastroenterol Hepatol, 2022, 37(8):1446-1454. doi:10.1111/jgh.15930.
|
[7] |
XU R, ZHOU X, WANG S, et al. Tumor organoid models in precision medicine and investigating cancer-stromal interactions[J]. Pharmacol Ther, 2021, 218:107668. doi:10.1016/j.pharmthera.2020.107668.
|
[8] |
KOPPER O, DE WITTE C J, LÕHMUSSAAR K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5):838-849. doi:10.1038/s41591-019-0422-6.
|
[9] |
XIA T, DU W L, CHEN X Y, et al. Organoid models of the tumor microenvironment and their applications[J]. J Cell Mol Med, 2021, 25(13):5829-5841. doi:10.1111/jcmm.16578.
|
[10] |
IDRISOVA K F, SIMON H U, GOMZIKOVA M O. Role of patient-derived models of cancer in translational oncology[J]. Cancers (Basel), 2022, 15(1):139. doi:10.3390/cancers15010139.
|
[11] |
SACHS N, DE LIGT J, KOPPER O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2):373-386.e310. doi:10.1016/j.cell.2017.11.010.
|
[12] |
KONDO J, INOUE M. Application of cancer organoid model for drug screening and personalized therapy[J]. Cells, 2019, 8(5):470. doi:10.3390/cells8050470.
|
[13] |
PETERSEN O W, RØNNOV-JESSEN L, HOWLETT A R, et al. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells[J]. Proc Natl Acad Sci U S A, 1992, 89(19):9064-9068. doi:10.1073/pnas.89.19.9064.
|
[14] |
YAN H H N, SIU H C, LAW S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6):882-897.e811. doi:10.1016/j.stem.2018.09.016.
|
[15] |
CALANDRINI C, SCHUTGENS F, OKA R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity[J]. Nat Commun, 2020, 11(1):1310. doi:10.1038/s41467-020-15155-6.
|
[16] |
EBISUDANI T, HAMAMOTO J, TOGASAKI K, et al. Genotype-phenotype mapping of a patient-derived lung cancer organoid biobank identifies NKX2-1-defined Wnt dependency in lung adenocarcinoma[J]. Cell Rep, 2023, 42(3):112212. doi:10.1016/j.celrep.2023.112212.
|
[17] |
JACOB F, SALINAS R D, ZHANG D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell, 2020, 180(1):188-204.e22. doi:10.1016/j.cell.2019.11.036.
|
[18] |
MO S, TANG P, LUO W, et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy[J]. Adv Sci (Weinh), 2022, 9(31):e2204097. doi:10.1002/advs.202204097.
|
[19] |
KAWASAKI K, TOSHIMITSU K, MATANO M, et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping[J]. Cell, 2020, 183(5):1420-1435.e21. doi:10.1016/j.cell.2020.10.023.
|
[20] |
MEISTER M T, GROOT KOERKAMP M J A, DE SOUZA T, et al. Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes[J]. EMBO Mol Med, 2022, 14(10):e16001. doi:10.15252/emmm.202216001.
|
[21] |
XIAO Y, YU D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221:107753. doi:10.1016/j.pharmthera.2020.107753.
|
[22] |
BOUCHERIT N, GORVEL L, OLIVE D. 3D tumor models and their use for the testing of immunotherapies[J]. Front Immunol, 2020, 11:603640. doi:10.3389/fimmu.2020.603640.
|
[23] |
NEAL J T, LI X, ZHU J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7):1972-1988.e16. doi:10.1016/j.cell.2018.11.021.
|
[24] |
YOSHIDA G J. Applications of patient-derived tumor xenograft models and tumor organoids[J]. J Hematol Oncol, 2020, 13(1):4. doi:10.1186/s13045-019-0829-z.
|
[25] |
TSAI S, MCOLASH L, PALEN K, et al. Development of primary human pancreatic cancer organoids,matched stromal and immune cells and 3D tumor microenvironment models[J]. BMC Cancer, 2018, 18(1):335. doi:10.1186/s12885-018-4238-4.
|
[26] |
LUO X, FONG E L S, ZHU C, et al. Hydrogel-based colorectal cancer organoid co-culture models[J]. Acta Biomater, 2021, 132:461-472. doi:10.1016/j.actbio.2020.12.037.
|
[27] |
SCHUTH S, LE BLANC S, KRIEGER T G, et al. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system[J]. J Exp Clin Cancer Res, 2022, 41(1):312. doi:10.1186/s13046-022-02519-7.
|
[28] |
LIM J T C, KWANG L G, HO N C W, et al. Hepatocellular carcinoma organoid co-cultures mimic angiocrine crosstalk to generate inflammatory tumor microenvironment[J]. Biomaterials, 2022, 284:121527. doi:10.1016/j.biomaterials.2022.121527.
|
[29] |
LO Y H, KOLAHI K S, DU Y, et al. A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation[J]. Cancer Discov, 2021, 11(6):1562-1581. doi:10.1158/2159-8290.CD-20-1109.
|
[30] |
DEKKERS J F, WHITTLE J R, VAILLANT F, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids[J]. J Natl Cancer Inst, 2020, 112(5):540-544. doi:10.1093/jnci/djz196.
|
[31] |
LIU X, CHENG Y, ABRAHAM J M, et al. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human barrett epithelial organoids[J]. Cancer Lett, 2018, 436:109-118. doi:10.1016/j.canlet.2018.08.017.
|
[32] |
TAKEDA H, KATAOKA S, NAKAYAMA M, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes[J]. Proc Natl Acad Sci U S A, 2019, 116(31):15635-15644. doi:10.1073/pnas.1904714116.
|
[33] |
VERISSIMO C S, OVERMEER R M, PONSIOEN B, et al. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening[J]. Elife, 2016, 5:e18489. doi:10.7554/eLife.18489.
|
[34] |
DING S, HSU C, WANG Z, et al. Patient-derived micro-organospheres enable clinical precision oncology[J]. Cell Stem Cell, 2022, 29(6):905-917.e6. doi:10.1016/j.stem.2022.04.006.
|
[35] |
DIJKSTRA K K, CATTANEO C M, WEEBER F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6):1586-1598.e1512. doi:10.1016/j.cell.2018.07.009.
|
[36] |
CHEN P, ZHANG X, DING R, et al. Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer[J]. Adv Sci (Weinh), 2021, 8(22):e2101176. doi:10.1002/advs.202101176.
|
[37] |
TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discov, 2018, 8(9):1112-1129. doi:10.1158/2159-8290.CD-18-0349.
|
[38] |
VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926. doi:10.1126/science.aao2774.
|
[39] |
YAO Y, XU X, YANG L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1):17-26.e16. doi:10.1016/j.stem.2019.10.010.
|
[40] |
HU Y, SUI X, SONG F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week[J]. Nat Commun, 2021, 12(1):2581. doi:10.1038/s41467-021-22676-1.
|
[41] |
KRETZSCHMAR K. Cancer research using organoid technology[J]. J Mol Med (Berl), 2021, 99(4):501-515. doi:10.1007/s00109-020-01990-z.
|
[42] |
CLINTON J, MCWILLIAMS-KOEPPEN P. Initiation,expansion,and cryopreservation of human primary tissue-derived normal and diseased organoids in embedded three-dimensional culture[J]. Curr Protoc Cell Biol, 2019, 82(1):e66. doi:10.1002/cpcb.66.
|
[43] |
FOO M A, YOU M, CHAN S L, et al. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies[J]. Biomark Res, 2022, 10(1):10. doi:10.1186/s40364-022-00356-6.
|
[44] |
DROST J, CLEVERS H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7):407-418. doi:10.1038/s41568-018-0007-6.
|
[45] |
WEEBER F, OOFT S N, DIJKSTRA K K, et al. Tumor organoids as a pre-clinical cancer model for drug discovery[J]. Cell Chem Biol, 2017, 24(9):1092-1100. doi:10.1016/j.chembiol.2017.06.012.
|