[1] |
HOFER M, LUTOLF M P. Engineering organoids[J]. Nat Rev Mater, 2021, 6(5):402-420. doi:10.1038/s41578-021-00279-y.
|
[2] |
ZHAO Z, CHEN X, DOWBAJ A M, et al. Organoids[J]. Nat Rev Methods Primers, 2022, 2:94. doi:10.1038/s43586-022-00174-y.
|
[3] |
YIN X L, MEAD B E, SAFAEE H, et al. Engineering stem cell organoids[J]. Cell Stem Cell, 2016, 18(1):25-38. doi:10.1016/j.stem.2015.12.005.
|
[4] |
CLEVERS H, LANCASTER M, TAKEBE T. Advances in organoid technology: Hans clevers, madeline lancaster, and takanori takebe[J]. Cell Stem Cell, 2017, 6:759-762. doi:10.1016/j.stem.2017.05.014.
|
[5] |
VAN DE WETERING M, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4):933-945. doi:10.1016/j.cell.2015.03.053.
|
[6] |
VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926. doi:10.1126/science.aao2774.
|
[7] |
SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265. doi:10.1038/nature07935.
|
[8] |
SATO T, STANGE D E, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon,adenoma,adenocarcinoma,and Barrett’s epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772. doi:10.1053/j.gastro.2011.07.050.
|
[9] |
BRANDENBERG N, HOEHNEL S, KUTTLER F, et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays[J]. Nat Biomed Eng, 2020, 4(9):863-874. doi:10.1038/s41551-020-0565-2.
|
[10] |
PARK S E, GEORGESCU A, HUH D. Organoids-on-a-chip[J]. Science, 2019, 364 (6444):960-965. doi:10.1126/science.aaw7894.
|
[11] |
FANG G, CHEN Y C, LU H X, et al. Advances in spheroids and organoids on a chip[J]. Adv Funct Mater, 2023, 33:2215043. doi:10.1002/adfm.202215043.
|
[12] |
GRACZ A D, WILLIAMSON I A, ROCHE K C, et al. A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis[J]. Nat Cell Biol, 2015, 17(3):340-349. doi:10.1038/ncb3104.
|
[13] |
JIANG S W, ZHAO H R, ZHANG W J, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity[J]. Cell Rep Med, 2020, 1(9):100161. doi:10.1016/j.xcrm.2020.100161.
|
[14] |
RENNER H, GRABOS M, BECKER K J, et al. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids[J]. Elife, 2020, 9:e52904. doi:10.7554/eLife.52904.
|
[15] |
WANG Y C, JEON H. 3D cell cultures toward quantitative high-throughput drug screening[J]. Trends Pharmacol Sci, 2022, 43(7):569-581. doi:10.1016/j.tips.2022.03.014.
|
[16] |
SAORIN G, CALIGIURI I, RIZZOLIO F. Microfluidic organoids-on-a-chip: The future of human models[J]. Semin Cell Dev Biol, 2023, 144:41-54. doi:10.1016/j.semcdb.2022.10.001.
|
[17] |
LOUEY A, HERNANDEZ D, PEBAY A, et al. Automation of organoid cultures:current protocols and applications[J]. SLAS Discov, 2021, 26(9):1138-1147. doi:10.1177/24725552211024547.
|