[1] |
FEIGIN V L, STARK B A, JOHNSON C O, et al. Global,regional,and national burden of stroke and its risk factors,1990-2019:A systematic analysis for the global burden of disease study 2019[J]. Lancet Neurol, 2021, 20(10):795-820. doi:10.1016/s1474-4422(21)00252-0.
|
[2] |
CAMPBELL B C V, KHATRI P. Stroke[J]. Lancet, 2020, 396(10244):129-142. doi:10.1016/S0140-6736(20)31179-X.
|
[3] |
LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379. doi:10.1038/nature12517.
|
[4] |
SIDHAYE J, KNOBLICH J A. Brain organoids:An ensemble of bioassays to investigate human neurodevelopment and disease[J]. Cell Death Differ, 2021, 28(1):52-67. doi:10.1038/s41418-020-0566-4.
|
[5] |
REVAH O, GORE F, KELLEY K W, et al. Maturation and circuit integration of transplanted human cortical organoids[J]. Nature, 2022, 610(7931):319-326. doi:10.1038/s41586-022-05277-w.
|
[6] |
SUN N, MENG X Q, LIU Y X, et al. Applications of brain organoids in neurodevelopment and neurological diseases[J]. J Biomed Sci, 2021, 28(1):30. doi:10.1186/s12929-021-00728-4.
|
[7] |
LANCASTER M A, CORSINI N S, WOLFINGER S, et al. Guided self-organization and cortical plate formation in human brain organoids[J]. Nat Biotechnol, 2017, 35(7):659-666. doi:10.1038/nbt.3906.
|
[8] |
GIANDOMENICO S L, MIERAU S B, GIBBONS G M, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output[J]. Nat Neurosci, 2019, 22(4):669-679. doi:10.1038/s41593-019-0350-2.
|
[9] |
CAKIR B, XIANG Y F, TANAKA Y, et al. Engineering of human brain organoids with a functional vascular-like system[J]. Nat Methods, 2019, 16(11):1169-1175. doi:10.1038/s41592-019-0586-5.
|
[10] |
QIAN X Y, SONG H J, MING G L. Brain organoids:Advances,applications and challenges[J]. Development, 2019, 146(8):dev166074. doi:10.1242/dev.166074.
|
[11] |
JACOB F, PATHER S R, HUANG W K, et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-Cov-2 neurotropism predominates in choroid plexus epithelium[J]. Cell Stem Cell, 2020, 27(6):937-950. doi:10.1016/j.stem.2020.09.016.
|
[12] |
HUANG W K, WONG S Z H, PATHER S R, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J]. Cell Stem Cell, 2021, 28(9):1657-1670. doi:10.1016/j.stem.2021.04.006.
|
[13] |
TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduct Target Ther, 2022, 7(1):168. doi:10.1038/s41392-022-01024-9.
|
[14] |
JEONG E, CHOI S, CHO S W. Recent advances in brain organoid technology for human brain research[J]. ACS Appl Mater Interfaces, 2023, 15(1):200-219. doi:10.1021/acsami.2c17467.
|
[15] |
CHEN H, JIN X, LI T, et al. Brain organoids:Establishment and application[J]. Front Cell Dev Biol, 2022, 10:1029873. doi:10.3389/fcell.2022.1029873.
|
[16] |
HUANG S C, HUANG F, ZHANG H Y, et al. In vivo development and single-cell transcriptome profiling of human brain organoids[J]. Cell Prolif, 2022, 55(3):e13201. doi:10.1111/cpr.13201.
|
[17] |
WANG Z, WANG S N, XU T Y, et al. Cerebral organoids transplantation improves neurological motor function in rat brain injury[J]. CNS Neurosci Ther, 2020, 26(7):682-697. doi:10.1111/cns.13286.
|
[18] |
ZHENG X, HAN D Q, LIU W H, et al. Human IPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson's disease[J]. Theranostics, 2023, 13(8):2673-2692. doi:10.7150/thno.80271.
|
[19] |
KURISHEV A O, KARPOV D S, NADOLINSKAIA N I, et al. CRISPR/CAS-based approaches to study schizophrenia and other neurodevelopmental disorders[J]. Int J Mol Sci, 2023, 24(1):241. doi:10.3390/ijms24010241.
|
[20] |
TANG X Y, XU L, WANG J S, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in ipsc-derived cerebral organoids from patients with down syndrome[J]. J Clin Invest, 2021, 131(12):e135763. doi:10.1172/jci135763.
|
[21] |
ESK C, LINDENHOFER D, HAENDELER S, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant[J]. Science, 2020, 370(6519):935-941. doi:10.1126/science.abb5390.
|
[22] |
FAIR S R, SCHWIND W, JULIAN D, et al. Cerebral organoids containing an AUTS2 missense variant model microcephaly[J]. Brain, 2023, 146(1):387-404. doi:10.1093/brain/awac244.
|
[23] |
HE Z, MAYNARD A, JAIN A, et al. Lineage recording in human cerebral organoids[J]. Nat Methods, 2022, 19(1):90-99. doi:10.1038/s41592-021-01344-8.
|
[24] |
CASTIGLIONE H, VIGNERON P-A, BAQUERRE C, et al. Human brain organoids-on-chip:Advances,challenges,and perspectives for preclinical applications[J]. Pharmaceutics, 2022, 14(11):2301. doi:10.3390/pharmaceutics14112301.
|
[25] |
AKCAY G, LUTTGE R. Microenvironments matter:Advances in brain-on-chip[J]. Biosensors (Basel), 2023, 13(5):551. doi:10.3390/bios13050551.
|
[26] |
WANG Y, WANG L, ZHU Y, et al. Human brain organoid-on-a-chip to model prenatal nicotine exposure[J]. Lab Chip, 2018, 18(6):851-860. doi:10.1039/c7lc01084b.
|
[27] |
SALMON I, GREBENYUK S, FATTAH A R A, et al. Engineering neurovascular organoids with 3D printed microfluidic chips[J]. Lab Chip, 2022, 22(8):1615-1629. doi:10.1039/d1lc00535a.
|
[28] |
CUI K, CHEN W, CAO R, et al. Brain organoid-on-chip system to study the effects of breast cancer derived exosomes on the neurodevelopment of brain[J]. Cell Regen, 2022, 11(1):7. doi:10.1186/s13619-021-00102-7.
|
[29] |
KIM M S, KIM D-H, KANG H K, et al. Modeling of hypoxic brain injury through 3d human neural organoids[J]. Cells, 2021, 10(2):234. doi:10.3390/cells10020234.
|
[30] |
WANG S N, WANG Z, WANG X Y, et al. Humanized cerebral organoids-based ischemic stroke model for discovering of potential anti-stroke agents[J]. Acta Pharmacol Sin, 2023, 44(3):513-523. doi:10.1038/s41401-022-00986-4.
|
[31] |
IWASA N, MATSUI T K, IGUCHI N, et al. Gene expression profiles of human cerebral organoids identify ppar pathway and pkm2 as key markers for oxygen-glucose deprivation and reoxygenation[J]. Front Cell Neurosci, 2021, 15:605030. doi:10.3389/fncel.2021.605030.
|
[32] |
WEVERS N R, NAIR A L, FOWKE T M, et al. Modeling ischemic stroke in a triculture neurovascular unit on-a-chip[J]. Fluids Barriers CNS, 2021, 18(1):59. doi:10.1186/s12987-021-00294-9.
|
[33] |
PAWLUK H, WOZNIAK A, GRZESK G, et al. The role of selected pro-inflammatory cytokines in pathogenesis of ischemic stroke[J]. Clin Interv Aging, 2020, 15:469-484. doi:10.2147/cia.S233909.
|
[34] |
SARMAH D, KAUR H, SARAF J, et al. Getting closer to an effective intervention of ischemic stroke:The big promise of stem cell[J]. Transl Stroke Res, 2018, 9(4):356-374. doi:10.1007/s12975-017-0580-0.
|
[35] |
KITAHARA T, SAKAGUCHI H, MORIZANE A, et al. Axonal extensions along corticospinal tracts from transplanted human cerebral organoids[J]. Stem Cell Reports, 2020, 15(2):467-481. doi:10.1016/j.stemcr.2020.06.016.
|
[36] |
CAO S Y, YANG D, HUANG Z Q, et al. Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke[J]. NPJ Regen Med, 2023, 8(1):27. doi:10.1038/s41536-023-00301-7.
|
[37] |
WANG S N, WANG Z, XU T Y, et al. Cerebral organoids repair ischemic stroke brain injury[J]. Transl Stroke Res, 2020, 11(5):983-1000. doi:10.1007/s12975-019-00773-0.
|
[38] |
CAO S Y, TAO M D, LOU S N, et al. Functional reconstruction of the impaired cortex and motor function by hmgeos transplantation in stroke[J]. Biochem Biophys Res Commun, 2023, 671:87-95. doi:10.1016/j.bbrc.2023.06.010.
|