[1] |
LACHIN J M, NATHAN D M. Understanding metabolic memory:The prolonged influence of glycemia during the Diabetes Control and Complications Trial (DCCT)on future risks of complications during the Study of the Epidemiology of Diabetes Interventions and Complications(EDIC)[J]. Diabetes Care, 2021, 44(10):2216-2224. doi:10.2337/dc20-3097.
|
[2] |
MILER R G, ORCHARD T J. Understanding metabolic memory:A tale of two studies[J]. Diabetes, 2020, 69(3):291-299. doi:10.2337/db19-0514.
|
[3] |
TULIGENGA R H. Intensive glycaemic control and cognitive decline in patients with type 2 diabetes: a meta-analysis[J]. Endocr Connect, 2015, 4(2):R16-24. doi:10.1530/EC-15-0004.
|
[4] |
AREOSA SASTRE A, VERNOOIJ R W, GONZÁLEZ-COLAÇO HARMAND M, et al. Effect of the treatment of Type 2 diabetes mellitus on the development of cognitive impairment and dementia[J]. Cochrane Database Syst Rev, 2017, 6(6):CD003804. doi:10.1002/14651858.CD003804.pub2.
|
[5] |
CUKIERMAN-YAFFE T, MCCLURE L A, RISOLI T, et al. The relationship between glucose control and cognitive function in people with diabetes after a lacunar stroke[J]. J Clin Endocrinol Metab, 2021, 106(4):e1521-e1528. doi:10.1210/clinem/dgab022.
|
[6] |
KATO M, NATARAJAN R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory[J]. Nat Rev Nephrol, 2019, 15(6):327-345. doi:10.1038/s41581-019-0135-6.
|
[7] |
ZHANG L, CHEN Z W, YANG S F, et al. MicroRNA-219 decreases hippocampal long-term potentiation inhibition and hippocampal neuronal cell apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR signaling pathway[J]. CNS Neurosci Ther, 2019, 25(1):69-77. doi:10.1111/cns.12981.
|
[8] |
CHANG P, TIAN Y, WILLIAMS A M, et al. Inhibition of histone deacetylase 6 protects hippocampal cells against mitochondria-mediated apoptosis in a model of severe oxygen-glucose deprivation[J]. Curr Mol Med, 2019, 19(9):673-682. doi:10.2174/1566524019666190724102755.
|
[9] |
XU Y, LI H, CHEN G, et al. Radix polygoni multiflori protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting the HDAC4/JNK pathway[J]. Biomed Pharmacother, 2022, 153:113427. doi:10.1016/j.biopha.2022.113427.
|
[10] |
许雯, 许永劼, 刘歆蕾, 等. TSA对不同糖浓度下小鼠海马神经元HT-22细胞凋亡的影响[J]. 天津医药, 2021, 49(4):349-353.
|
|
XU W, XU Y J, LIU X L, et al. Effects of TSA on the apoptosis of HT-22 cells in mouse hippocampal neurons under different concentrations of glucose[J]. Tianjin Med J, 2021, 49(4):349-353. doi:10.11958/20202807.
|
[11] |
ESIN R G, KHAIRULLIN I K, ESIN O R, et al. Diabetic encephalopathy:current insights and potential therapeutic strategies[J]. Zh Nevrol Psikhiatr ImSS Korsakova, 2021, 121(7):49-54. doi:10.17116/jnevro202112107149.
|
[12] |
VILLENEUVE L M, REDDYM A, LANTINGL L, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes[J]. Proc Natl Acad Sci U S A, 2008, 105(26):9047-9052. doi:10.1073/pnas.0803623105.
|
[13] |
WANG Z, ZHAO H, GUAN W, et al. Metabolic memory in mitochondrial oxidative damage triggers diabetic retinopathy[J]. BMC Ophthalmol, 2018, 18(1):258. doi:10.1186/s12886-018-0921-0.
|
[14] |
WANG H, DENG J, CHEN L, et al. Acute glucose fluctuation induces inflammation and neurons apoptosis in hippocampal tissues of diabetic rats[J]. J Cell Biochem, 2021, 122(9):1239-1247. doi:10.1002/jcb.29523.
|
[15] |
ZHANG J H, ZHANGJ F, SONG J, et al. Effects of berberine on diabetes and cognitive impairment in an animal model:The mechanisms of action[J]. Am J Chin Med, 2021, 49(6):1399-1415. doi:10.1142/S0192415X21500658.
|
[16] |
许永劼, 许雯, 陈钢, 等. 2种高糖诱导海马神经元模型应用及优势比较[J]. 中国比较医学杂志, 2021, 31(8):1-8.
|
|
XU Y J, XU W, CHEN G, et al. Application and comparison of the advantages of two high-glucose-induced hippocampal neuron models[J]. Chinese Journal of Comparative Medicine, 2021, 31(8):1-8. doi:10.3969/j.issn.1671-7856.2021.08.001.
|
[17] |
YAO Y, SONG Q, HU C, et al. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes[J]. Cardiovasc Res, 2022, 118(1):196-211. doi:10.1093/cvr/cvab013.
|
[18] |
任伟伟, 李守宏, 熊洁, 等. 人牙周膜细胞与高糖损伤的代谢记忆效应[J]. 中国组织工程研究, 2017, 21(4):532-537.
|
|
REN W W, LI S H, XIONG J, et al. High glucose induces a metabolic memory in human periodontal ligament cells[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(4):532-537. doi:10.3969/j.issn.2095-4344.2017.04.007.
|
[19] |
SHEN Y, WEI W, ZHOU D X, et al. Histone acetylation enzymes coordinate metabolism and gene expression[J]. Trends Plant Sci, 2015, 20(10):614-621. doi:10.1016/j.tplants.2015.07.005.
|
[20] |
陈钢, 许永劼, 黄昶煜东, 等. 二苯乙烯苷、大黄素改善高糖诱导下小鼠海马神经元凋亡[J]. 天津医药, 2022, 50(6):561-565.
|
|
CHEN G, XU Y J, HUANG C Y D, et al. Tetrahydroxystilbene glucoside and emodin improves the hippocampal neuronal apoptosis in mice induced by high glucose[J]. Tianjin Med J, 2022, 50(6):561-565.doi:10.11958/20212403.
|
[21] |
ZHENG Z, CHEN H, LI J, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin[J]. Diabetes, 2012, 61(1):217-228. doi:10.2337/db11-0416.
|
[22] |
ZHONG Q, KOWLURU R A. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J]. J Cell Biochem, 2010, 110(6):1306-1313. doi:10.1002/jcb.22644.
|
[23] |
JEBASINGH F, THOMAS N. Barker hypothesis and hypertension[J]. Front Public Health, 2021, 9:767545. doi:10.3389/fpubh.2021.767545.
|
[24] |
GAWLIN S K, GAWLIN S D, FILIP M, et al. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health[J]. Nutr Rev, 2021, 79(6):709-725. doi:10.1152/ajpcell.00201.2022.
|
[25] |
ZHAO S, LI J, WANG N, et al. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway[J]. Mol Med Rep, 2015, 12(4):6112-1168. doi:10.3892/mmr.2015.4164.
|
[26] |
CERIELLO A, IHNNAT M A, THORPE J E. Clinical review 2:The "metabolic memory":is more than just tight glucose control necessary to prevent diabetic complications[J]. J Clin Endocrinol Metab, 2009, 94(2):410-415. doi:10.1210/jc.2008-1824.
|
[27] |
KINNEL B, SINGH S K, OPREA G, et al. Targeted therapy and mechanisms of drug resistance in breast cancer[J]. Cancers(Basel), 2023, 15(4):1320. doi:10.3390/cancers15041320.
|
[28] |
CHATTERJEE S, CASSEL R, SCHNEIDER A, et al. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator[J]. EMBO Mol Med, 2018, 10(11):e8587. doi:10.15252/emmm.201708587.
|
[29] |
GÜNAYDIN C, ÇELIK Z B, BILGE S S, et al. SAHA attenuates rotenone-induced toxicity in primary microglia and HT-22 cells[J]. Toxicol Ind Health, 2021, 37(1):23-33. doi:10.1177/0748233720979278.
|