[1] |
邵蕊, 李岱, 韩召利, 等. 基于老年综合评估的个体化康复训练对阿尔茨海默病患者认知功能、风险防范的影响[J]. 天津医药, 2021, 49(8):847-851.
|
|
SHAO R, LI D, HAN Z L, et al. Effects of individualized rehabilitation training based on comprehensive geriatric assessment on cognitive function and risk prevention of patients with Alzheimer's disease[J]. Tianjin Med J, 2021, 49(8):847-851. doi:10.11958/20210643.
|
[2] |
YANG J, WISE L, FUKUCHI K I. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer's disease[J]. Front Immunol, 2020, 11:724. doi:10.3389/fimmu.2020.00724.
|
[3] |
YIN C, ACKERMANN S, MA Z, et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q[J]. Nat Med, 2019, 25(3):496-506. doi:10.1038/s41591-018-0336-8.
|
[4] |
SHAH A, KISHORE U, SHASTRI A. Complement system in Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(24):13647. doi:10.3390/ijms222413647.
|
[5] |
FATOBA O, ITOKAZU T, YAMASHITA T. Complement cascade functions during brain development and neurodegeneration[J]. FEBS J, 2022, 289(8):2085-2109. doi:10.1111/febs.15772.
|
[6] |
CHEN W T, LU A, CRAESSAERTS K, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease[J]. Cell, 2020, 182(4):976-991.e19. doi:10.1016/j.cell.2020.06.038.
|
[7] |
WU T, DEJANOVIC B, GANDHAM V D, et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy[J]. Cell Rep, 2019, 28(8):2111-2123.e6. doi:10.1016/j.celrep.2019.07.060.
|
[8] |
LIAN H, YANG L, COLE A, et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease[J]. Neuron, 2015, 85(1):101-115. doi:10.1016/j.neuron.2014.11.018.
|
[9] |
LITVINCHUK A, WAN Y W, SWARTZLANDER D B, et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease[J]. Neuron, 2018, 100(6):1337-1353.e5. doi:10.1016/j.neuron.2018.10.031.
|
[10] |
ZHANG D F, FAN Y, XU M, et al. Complement C7 is a novel risk gene for Alzheimer's disease in Han Chinese[J]. Natl Sci Rev, 2019, 6(2):257-274. doi:10.1093/nsr/nwy127.
|
[11] |
YUAN H, DU L, GE P. Complement receptor 1 genetic polymorphism contributes to sporadic Alzheimer's disease susceptibility in Caucasians: a meta-analysis[J]. Biosci Rep, 2020, 40(6):BSR20200321. doi:10.1042/BSR20200321.
|
[12] |
MAHMOUDI R, FELDMAN S, KISSERLI A, et al. Inherited and acquired decrease in complement receptor 1(CR1)density on red blood cells associated with high levels of soluble CR1 in Alzheimer's disease[J]. Int J Mol Sci, 2018, 19(8):2175. doi:10.3390/ijms19082175.
|
[13] |
CAI H, PANG Y, WANG Q, et al. Proteomic profiling of circulating plasma exosomes reveals novel biomarkers of Alzheimer's disease[J]. Alzheimers Res Ther, 2022, 14(1):181. doi:10.1186/s13195-022-01133-1.
|
[14] |
GOETZL E J, SCHWARTZ J B, ABNER E L, et al. High complement levels in astrocyte-derived exosomes of Alzheimer disease[J]. Ann Neurol, 2018, 83(3):544-552. doi:10.1002/ana.25172.
|
[15] |
NOGUERAS-ORTIZ C J, MAHAIRAKI V, DELGADO-PERAZA F, et al. Astrocyte- and neuron-derived extracellular vesicles from Alzheimer's disease patients effect complement-mediated neurotoxicity[J]. Cells, 2020, 9(7):1618. doi:10.3390/cells9071618.
|
[16] |
FLORENTINUS-MEFAILOSKI A, BOWDEN P, SCHELTENS P, et al. The plasma peptides of Alzheimer's disease[J]. Clin Proteomics, 2021, 18(1):17. doi:10.1186/s12014-021-09320-2.
|
[17] |
BONHAM L W, DESIKAN R S, YOKOYAMA J S, et al. The relationship between complement factor C3,APOE ε4,amyloid and tau in Alzheimer's disease[J]. Acta Neuropathol Commun, 2016, 4(1):65. doi:10.1186/s40478-016-0339-y.
|
[18] |
LU G, LIU W, HUANG X, et al. Complement factor H levels are decreased and correlated with serum C-reactive protein in late-onset Alzheimer's disease[J]. Arq Neuropsiquiatr, 2020, 78(2):76-80. doi:10.1590/0004-282X20190151.
|
[19] |
王翠, 杨畅, 金玉, 等. 木犀草苷对阿尔茨海默病模型细胞凋亡和炎性因子表达的研究[J]. 天津医药, 2023, 51(7):701-706.
|
|
WANG C, YANG C, JIN Y, et al. Study of cynaroside on apoptosis and expression of inflammatory factor in model cells of Alzheimer's disease[J]. Tianjin Med J, 2023, 51(7):701-706. doi:10.11958/20221922.
|
[20] |
CHERNYAEVA L, RATTI G, TEIRILÄ L, et al. Reduced binding of ApoE4 to complement factor H promotes amyloid-β oligomerization and neuroinflammation[J]. EMBO Rep, 2023, 24(7):e56467. doi:10.15252/embr.202256467.
|
[21] |
BISHT K, SHARMA K, TREMBLAY M È. Chronic stress as a risk factor for Alzheimer's disease:Roles of microglia-mediated synaptic remodeling,inflammation,and oxidative stress[J]. Neurobiol Stress, 2018, 9:9-21. doi:10.1016/j.ynstr.2018.05.003.
|
[22] |
ROY E R, WANG B, WAN Y W, et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease[J]. J Clin Invest, 2020, 130(4):1912-1930. doi:10.1172/JCI133737.
|
[23] |
LIAN H, LITVINCHUK A, CHIANG A C, et al. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease[J]. J Neurosci, 2016, 36(2):577-589. doi:10.1523/JNEUROSCI.2117-15.2016.
|
[24] |
GUAN P P, GE T Q, WANG P. As a potential therapeutic target,C1q induces synapse loss via inflammasome-activating apoptotic and mitochondria impairment mechanisms in Alzheimer's disease[J]. J Neuroimmune Pharmacol, 2023, 18(3):267-284. doi:10.1007/s11481-023-10076-9.
|
[25] |
AN X Q, XI W, GU C Y, et al. Complement protein C5a enhances the β-amyloid-induced neuro-inflammatory response in microglia in Alzheimer's disease[J]. Med Sci(Paris), 2018,34 Focus issue F1:116-120. doi:10.1051/medsci/201834f120.
|
[26] |
KRETZSCHMAR G C, BUMILLER-BINI V, GASPARETTO FILHO M A, et al. Neutrophil extracellular traps:A perspective of neuroinflammation and complement activation in Alzheimer's disease[J]. Front Mol Biosci, 2021, 8:630869. doi:10.3389/fmolb.2021.630869.
|
[27] |
HAO X, LI Z, LI W, et al. Periodontal infection aggravates c1q-mediated microglial activation and synapse pruning in Alzheimer's mice[J]. Front Immunol, 2022, 13:816640. doi:10.3389/fimmu.2022.816640.
|
[28] |
WANG C, YUE H, HU Z, et al. Microglia mediate forgetting via complement-dependent synaptic elimination[J]. Science, 2020, 367(6478):688-694. doi:10.1126/science.aaz2288.
|
[29] |
QIN Q, WANG M, YIN Y, et al. The Specific mechanism of TREM2 regulation of synaptic clearance in Alzheimer's disease[J]. Front Immunol, 2022, 13:845897. doi:10.3389/fimmu.2022.845897.
|
[30] |
SPURRIER J, NICHOLSON L, FANG X T, et al. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q[J]. Sci Transl Med, 2022, 14(647):eabi8593. doi:10.1126/scitranslmed.abi8593.
|
[31] |
CARPANINI S M, TORVELL M, BEVAN R J, et al. Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models[J]. Acta Neuropathol Commun, 2022, 10(1):99. doi:10.1186/s40478-022-01404-w.
|
[32] |
LEE H E, LIM D, LEE J Y, et al. Recent tau-targeted clinical strategies for the treatment of Alzheimer's disease[J]. Future Med Chem, 2019, 11(15):1845-1848. doi:10.4155/fmc-2019-0151.
|
[33] |
HU J, YANG Y, WANG M, et al. Complement C3a receptor antagonist attenuates tau hyperphosphorylation via glycogen synthase kinase 3β signaling pathways[J]. Eur J Pharmacol, 2019, 850:135-140. doi:10.1016/j.ejphar.2019.02.020.
|
[34] |
YAO Y, CHANG Y, LI S, et al. Complement C3a receptor antagonist alleviates tau pathology and ameliorates cognitive deficits in P301S mice[J]. Brain Res Bull, 2023, 200:110685. doi:10.1016/j.brainresbull.2023.110685.
|
[35] |
JUN G R, YOU Y, ZHU C, et al. Protein phosphatase 2A and complement component 4 are linked to the protective effect of APOE ɛ2 for Alzheimer's disease[J]. Alzheimers Dement, 2022, 18(11):2042-2054. doi:10.1002/alz.12607.
|
[36] |
JEVTIC S, SENGAR A S, SALTER M W, et al. The role of the immune system in Alzheimer disease:Etiology and treatment[J]. Ageing Res Rev, 2017, 40:84-94. doi:10.1016/j.arr.2017.08.005.
|
[37] |
HANSEN D V, HANSON J E, SHENG M. Microglia in Alzheimer's disease[J]. J Cell Biol, 2018, 217(2):459-472. doi:10.1083/jcb.201709069.
|
[38] |
LANDLINGER C, OBERLEITNER L, GRUBER P, et al. Active immunization against complement factor C5a:A new therapeutic approach for Alzheimer's disease[J]. J Neuroinflammation, 2015, 12:150. doi:10.1186/s12974-015-0369-6.
|
[39] |
DEJANOVIC B, HUNTLEY M A, DE MAZIÈRE A, et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies[J]. Neuron, 2018, 100(6):1322-1336.e7. doi:10.1016/j.neuron.2018.10.014.
|
[40] |
HETTMANN T, GILLIES S D, KLEINSCHMIDT M, et al. Development of the clinical candidate PBD-C06,a humanized pGlu3-Aβ-specific antibody against Alzheimer's disease with reduced complement activation[J]. Sci Rep, 2020, 10(1):3294. doi:10.1038/s41598-020-60319-5.
|
[41] |
CHEN H, DENG C, MENG Z, et al. Effects of catalpol on Alzheimer's disease and its mechanisms[J]. Evid Based Complement Alternat Med, 2022,2022:2794243. doi:10.1155/2022/2794243.
|