[1] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics,2022[J]. CA Cancer J Clin, 2022, 72(1):7-33. doi:10.3322/caac.21708.
|
[2] |
GREENWALT I, ZAZA N, DAS S, et al. Precision medicine and targeted therapies in breast cancer[J]. Surg Oncol Clin N Am, 2020, 29(1):51-62. doi:10.1016/j.soc.2019.08.004.
|
[3] |
LANCASTER M A, KNOBLICH J A. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125. doi:10.1126/science.1247125.
|
[4] |
SATO T, STANGE D E, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon,adenoma,adenocarcinoma,and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772. doi:10.1053/j.gastro.2011.07.050.
|
[5] |
SATO T, CLEVERS H. SnapShot: growing organoids from stem cells[J]. Cell, 2015, 161(7):1700-1700.e1. doi:10.1016/j.cell.2015.06.028.
|
[6] |
YANG B, WEI K, LOEBEL C, et al. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics[J]. Nat Commun, 2021, 12(1):3514. doi:10.1038/s41467-021-23120-0.
|
[7] |
WANG F, WEAVER V M, PETERSEN O W, et al. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology[J]. Proc Natl Acad Sci U S A, 1998, 95(25):14821-14826. doi:10.1073/pnas.95.25.14821.
|
[8] |
JESPERSEN H, LINDBERG M F, DONIA M, et al. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model[J]. Nat Commun, 2017, 8(1):707. doi:10.1038/s41467-017-00786-z.
|
[9] |
ZHAO Y, SHUEN T, TOH T B, et al. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy[J]. Gut, 2018, 67(10):1845-1854. doi:10.1136/gutjnl-2017-315201.
|
[10] |
DIVOUX J, FLORENT R, JACOBS M, et al. The TRIPLEX study: use of patient-derived tumor organoids as an innovative tool for precision medicine in triple-negative breast cancer[J]. BMC Cancer, 2023, 23(1):883. doi:10.1186/s12885-023-11362-8.
|
[11] |
SACHS N, DE LIGT J, KOPPER O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2):373-386. doi:10.1016/j.cell.2017.11.010.
|
[12] |
PRINCE E, CRUICKSHANK J, BA-ALAWI W, et al. Biomimetic hydrogel supports initiation and growth of patient-derived breast tumor organoids[J]. Nat Commun, 2022, 13(1):1466. doi:10.1038/s41467-022-28788-6.
|
[13] |
HOGSTROM J M, CRUZ K A, SELFORS L M, et al. Simultaneous isolation of hormone receptor-positive breast cancer organoids and fibroblasts reveals stroma-mediated resistance mechanisms[J]. J Biol Chem, 2023, 299(8):105021. doi:10.1016/j.jbc.2023.105021.
|
[14] |
DEKKERS J F, WHITTLE J R, VAILLANT F, et al. Modeling breast cancer using CRISPR-Cas9-Mediated engineering of human breast organoids[J]. J Natl Cancer Inst, 2020, 112(5):540-544. doi:10.1093/jnci/djz196.
|
[15] |
CHEW N J, LIM KAM SIAN T, NGUYEN E V, et al. Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models[J]. Breast Cancer Res, 2021, 23(1):82. doi:10.1186/s13058-021-01461-4.
|
[16] |
VANDERVORST K, DREYER C A, HATAKEYAMA J, et al. Vangl-dependent Wnt/planar cell polarity signaling mediates collective breast carcinoma motility and distant metastasis[J]. Breast Cancer Res, 2023, 25(1):52. doi:10.1186/s13058-023-01651-2.
|
[17] |
CAMPANER E, ZANNINI A, SANTORSOLA M, et al. Breast cancer organoids model patient-specific response to drug treatment[J]. Cancers (Basel), 2020, 12(12):3869. doi:10.3390/cancers12123869.
|
[18] |
GUILLEN K P, FUJITA M, BUTTERFIELD A J, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology[J]. Nat Cancer, 2022, 3(2):232-250. doi:10.1038/s43018-022-00337-6.
|
[19] |
JIANG T, ZHU J, JIANG S, et al. Targeting lncRNA DDIT4-AS1 sensitizes triple negative breast cancer to chemotherapy via suppressing of autophagy[J]. Adv Sci (Weinh), 2023, 10(17):e2207257. doi:10.1002/advs.202207257.
|
[20] |
SOOSAINATHAN A, IRAVANI M, EL-BOTTY R, et al. Targeting transcriptional regulation with a CDK9 inhibitor suppresses growth of endocrine- and palbociclib-resistant ER+ breast cancers[J]. Cancer Res, 2024, 84(1):17-25. doi:10.1158/0008-5472.CAN-23-0650.
|
[21] |
SAEKI S, KUMEGAWA K, TAKAHASHI Y, et al. Transcriptomic intratumor heterogeneity of breast cancer patient-derived organoids may reflect the unique biological features of the tumor of origin[J]. Breast Cancer Res, 2023, 25(1):21. doi:10.1186/s13058-023-01617-4.
|
[22] |
YANG L, LIU B, CHEN H, et al. Progress in the application of organoids to breast cancer research[J]. J Cell Mol Med, 2020, 24(10):5420-5427. doi:10.1111/jcmm.15216.
|
[23] |
ZHOU Z, CONG L, CONG X. Patient-derived organoids in precision medicine: drug screening,Organoid-on-a-Chip and living Organoid Biobank[J]. Front Oncol, 2021, 11:762184. doi:10.3389/fonc.2021.762184.
|
[24] |
SHU D, SHEN M, LI K, et al. Organoids from patient biopsy samples can predict the response of BC patients to neoadjuvant chemotherapy[J]. Ann Med, 2022, 54(1):2581-2597. doi:10.1080/07853890.2022.2122550.
|
[25] |
DONG S, MATOSSIAN M D, YOUSEFI H, et al. Targeting Mcl-1 by a small molecule NSC260594 for triple-negative breast cancer therapy[J]. Sci Rep, 2023, 13(1):11843. doi:10.1038/s41598-023-37058-4.
|
[26] |
YANG M, GUAN T, CHEN C F, et al. Mesothelin-targeted CAR-NK cells derived from induced pluripotent stem cells have a high efficacy in killing triple-negative breast cancer cells as shown in several preclinical models[J]. J Immunother, 2023, 46(8):285-294. doi:10.1097/CJI.0000000000000483.
|
[27] |
SONG R, MA S, XU J, et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR[J]. Mol Cancer, 2023, 22(1):16. doi:10.1186/s12943-023-01719-9.
|
[28] |
NARAYAN P, PROWELL T M, GAO J J, et al. FDA approval summary:Alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer[J]. Clin Cancer Res, 2021, 27(7):1842-1849. doi:10.1158/1078-0432.CCR-20-3652.
|
[29] |
YANG Y S, JIN X, LI Q, et al. Superenhancer drives a tumor-specific splicing variant of MARCO to promote triple-negative breast cancer progression[J]. Proc Natl Acad Sci U S A, 2022, 119(46):e2207201119. doi:10.1073/pnas.2207201119.
|
[30] |
TSAI K K, HUANG S S, NORTHEY J J, et al. Screening of organoids derived from patients with breast cancer implicates the repressor NCOR2 in cytotoxic stress response and antitumor immunity[J]. Nat Cancer, 2022, 3(6):734-752. doi:10.1038/s43018-022-00375-0.
|